internal angle
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 22)

H-INDEX

8
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 47
Author(s):  
De Zhang ◽  
Zhiqiang Cheng ◽  
Dajiang Geng ◽  
Shengjia Xie ◽  
Tao Wang

Compaction is a critical step in asphalt pavement construction. The objective of this study is to analyze the mesoscale mechanical behaviors of coarse aggregates in asphalt mixtures during gyratory compaction through experiments and numerical simulation using the Discrete Element Method (DEM). A novel granular sensor (SmartRock) was embedded in an asphalt mixture specimen to collect compaction response data, including acceleration, stress, rotation angle and temperature. Moreover, the irregularly shaped coarse aggregates were regenerated in the DEM model, and numerical simulations were conducted to analyze the evolution of aggregate interaction characteristics. The findings are as follows: (1) the measured contact stress between particles changes periodically during gyratory compaction, and the amplitude of stress tends to be stable with the increase of compaction cycles; (2) the contact stress of particles is influenced by the shape of aggregates: flat-shaped particles are subjected to greater stress than angular, fractured or elongated particles; (3) the proportion of strong contacts among particles is high in the initial gyratory compaction stage, then decreases as the number of gyratory compactions grows, the contacts among particles tending to homogenize; (4) during initial gyratory compactions, the normal contact forces form a vertical distribution due to the aggregates’ gravity accumulation. The isotropic distribution of contact forces increases locally in the loading direction along the axis with a calibrated internal angle orientation (1.25°) in the earlier cyclic loading stage, then the local strong contacts decrease in the later stage, while the strength of the force chains in other directions increase. The anisotropy of aggregate contact force networks tends to weaken. In other words, kneading and shearing action during gyratory compaction have a positive impact on the homogenization and isotropy of asphalt mixture contact forces.


Author(s):  
Lingping Chen ◽  
Yanchao Zhang ◽  
Yahui Cui ◽  
Bowen Zhi ◽  
Jie Wang ◽  
...  

Abstract Since the last decade, the non-contact finger seal (NCFS) has attracted an increasing number of researchers due to its inherent flexibility and non-contact features, which can significantly improve the service life and reduce the leakage rate of the finger seals. In this paper, to enhance the NCFS sealing performance, lifting pads with twenty (20) different herringbone groove surface topographies are proposed based on the uniform design method. Numerical analysis is carried out based on the two-way fluid-structure interaction (FSI) method to better mimic the actual working conditions. The analysis of results using statistical tools reveals that the herringbone groove topographies placed on the bottom surface of low-pressure lifting pads can significantly improve the load-carrying capacity and sealing performance. In addition, the correlation analysis of the sealing performance and geometric parameters of the herringbone groove demonstrate that reducing the groove width or increasing the groove internal angle can improve the lifting and leakage capacities. Finally, the optimal herringbone groove and general structure (no groove) are comparatively analysed under variable working conditions, and the results show that the former has much better sealing performance.


Author(s):  
Julian Talbot ◽  
Charles Antoine

Abstract We consider a minimal model of random pan stacking. A single pan consists of a V-shaped object characterized by its internal angle α. The stack is constructed by piling up N pans with different angles in a given, random order. The set of pans is generated by sampling from various kinds of distributions of the pan angles: discrete or continuous, uniform or optimized. For large N the mean height depends principally on the average of the distance between the bases of two consecutive pans, and the effective compaction of the stack, compared with the unstacked pans, is 2 log 2/π. We also obtain the discrete and continuous distributions that maximize the mean stack height. With only two types of pans, the maximum occurs for equal probabilities, while when many types of pans are available, the optimum distribution strongly favours those with the most acute and the most obtuse angles. With a continuous distribution of angles, while one never finds two identical pans, the behaviour is similar to a system with a large number of discrete angles.


2021 ◽  
pp. 5559-5570
Author(s):  
Liang Yong ◽  
Zhang You’an ◽  
Yan Shi

Author(s):  
Daniel J Riddoch ◽  
David A Hills

We consider the state of stress created by the presence of an edge dislocation at an arbitrary position, in a wedge of arbitrary internal angle. A method for determining the state of stress in the wedge is demonstrarted and verified against finite element method simulations. Furthermore, a Mellin transform is employed to ensure that the free surfaces of the wedge remain traction free along their length.


2021 ◽  
Vol 105 (564) ◽  
pp. 501-506
Author(s):  
Prithwijit De ◽  
Gerry Leversha

In this Article we study the following problem: Let ΔABC be an acute-angled triangle. Let the points D, E, F on the sides BC, CA and AB, respectively, be such that AD is the median from A, BE is the internal angle bisector of ∠ABC, and CF is the altitude from C. This is shown in Figure 1.


2021 ◽  
Author(s):  
Laurent L'Entete ◽  
Hareenanden Ramasawmy

Abstract Composite materials made with synthetic fibres like E-glass, Kevlar or carbon have helped to provide a wide array of products to society with specific engineering properties. However, these materials have a high carbon footprint as well as being non-biodegradable. The use of natural fibre, as a substitution to these man-made fibres, has been studied and encouraging results are being obtained.In this study, the use of ‘Pandanus utilis’ fibre as a reinforcing agent in plastic was investigated with the aim of exploring specific properties such as the tensile strength of the fibre, its wettability and the effect of fibre length after treating the fibre with two different NaOH solutions. Results have shown that better reinforcement was obtained for the composites (11.10 ± 2.53MPa) with fibres subjected to a more aggressive treatment (2.5%NaOH for 2h) compared to the composite made with fibres having maximum tensile strength (168 ± 12MPa at 0.5% NaOH for 14h), due to a better hydrophilicity of the alkaline treated fibre (87.37° internal angle). Within the range of short chopped fibre length tested (6 to 15 mm), it was shown that there was a general decrease in the tensile strength of the composite.


2021 ◽  
Vol 9 (2) ◽  
pp. 167
Author(s):  
Jian-Feng Zhu ◽  
Hong-Yi Zhao ◽  
Ri-Qing Xu ◽  
Zhan-You Luo ◽  
Dong-Sheng Jeng

This paper presents a simple but workable constitutive model for the stress–strain relationship of sandy soil during the process of tunneling construction disturbance in coastal cities. The model was developed by linking the parameter K and internal angle φ of the Duncan–Chang model with the disturbed degree of sand, in which the effects of the initial void ratio on the strength deformation property of sands are considered using a unified disturbance function based on disturbed state concept theory. Three cases were analyzed to investigate the validity of the proposed constitutive model considering disturbance. After validation, the proposed constitutive model was further incorporated into a 3D finite element framework to predict the soil deformation caused by shield construction. It was found that the simulated results agreed well with the analytical solution, indicating that the developed numerical model with proposed constitutive relationship is capable of characterizing the mechanical properties of sand under tunneling construction disturbance.


Author(s):  
M. Khani ◽  
G.R. Ebrahimi ◽  
H.R. Ezatpour ◽  
A. Momeni

In this research, the effect of accumulative extrusion bonding (AEB) on the microstructure and mechanical properties of Mg-0.8Mn-0.5Ca biocompatible alloy was investigated. The goal of this research was to develop the mechanical and corrosion properties of Mg-0.8Mn-0.5Ca alloy after ABE process as a novel severe plastic deformation process. The simulation of AEB process showed that the average effective strain per pass for channels with the internal angle of 120? is about 1.93. The average grain size was dramatically decreased from about 448.3 ?m for the homogenized alloy to 1.55 ?m for the 3-pass processed sample. Microstructural observations suggested a combination of continuous, discontinuous and twinning-induced dynamic recrystallization as the major mechanisms of grain refinement. Tensile and compressive strengths were improved from 150 and 205 MPa to 330 and 301 MPa after three passes of AEB, respectively indicating 2 and 1.5 times improvements, respectively. Tensile elongation decreased from 26 % for the homogenized sample to 7.5 % for the 3-pass processed sample due to the severe work-hardening, non-uniform strains and inhomogeneous microstructure produced by ABE process. Corrosion resistance in SBF solution was improved from 1.1 to 14.159 K? Cm2 after three passes of ABE due to the presence of hydroxyapatite formed on the surface of the AEBed samples.


Sign in / Sign up

Export Citation Format

Share Document