Fracture Analysis of Magnetoelectroelastic Composite Materials

2007 ◽  
Vol 348-349 ◽  
pp. 69-72 ◽  
Author(s):  
R. Rojas-Díaz ◽  
Felipe García-Sánchez ◽  
Andrés Sáez ◽  
Chuan Zeng Zhang

This paper presents a crack analysis of linear magnetoelectroelastic materials subjected to static loading conditions. To this end, an efficient boundary element method (BEM) is developed. Unlike many previous investigations published in literature, two-dimensional (2-D) linear magnetoelectroelastic materials possessing fully coupled piezoelectric, piezomagnetic and magnetoelectric effects are considered in this paper. A combination of the displacement BEM and the traction BEM is used in the present formulation. The displacement BEM is applied for the external boundary of the cracked solid, while the traction BEM is used for the crack-faces. A regularization technique is implemented to compute the strongly singular and hypersingular boundary integrals in the BEM. The electric displacement intensity factor (EDIF), the magnetic induction intensity factor (MIIF), the stress intensity factors (SIF), the mechanical strain energy release rate (MSERR) and the total energy release rate (TERR) are evaluated directly from the computed nodal values at discontinuous quarter point elements placed next to the crack tip. The accuracy of the BEM is verified by analytical solutions known in literature. Results are presented for a branched crack in a bending specimen subjected to combined magnetic-electric-mechanical loading conditions.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Dongsheng Yang ◽  
Guanting Liu

Based on the Gurtin-Murdoch surface/interface model and complex potential theory, by constructing a new conformal mapping, the electrically permeable boundary condition with surface effect is established, and the antiplane fracture problem of three nanocracks emanating from a hexagonal nanohole in one-dimensional hexagonal piezoelectric quasicrystals with surface effect is studied. The exact solutions of the stress intensity factor of the phonon field and the phason field, the electric displacement intensity factor, and the energy release rate are obtained under the two electrically permeable and the electrically impermeable boundary conditions. The numerical examples show the influence of surface effect on the stress intensity factors of the phonon field and the phason field, the electric displacement intensity factor, and the energy release rate under the two boundary conditions. It can be seen that the surface effect leads to the coupling of the phonon field, phason field, and electric field, and with the decrease of cavity size, the influence of surface effect is more obvious.


2020 ◽  
pp. 2150127
Author(s):  
Dongsheng Yang ◽  
Guanting Liu

Based on the Gurtin–Murdoch surface/interface model and complex potential theory, by constructing a new conformal mapping, the anti-plane fracture problem of three nano-cracks emanating from a magnetoelectrically permeable triangle nano-hole in magnetoelectroelastic materials with surface effect is studied. The exact solutions of the stress intensity factor, the electric displacement intensity factor, the magnetic induction intensity factor, and the energy release rate are obtained under the boundary conditions of magnetoelectrically permeable and impermeable. The numerical examples show the influence of surface effect on the stress intensity factor, the electric displacement intensity factor, the magnetic induction intensity factor, and the energy release rate under two different boundary conditions. It can be seen that the surface effect leads to the coupling of stress, electric and magnetic field, and with the increase of cavity size, the influence of surface effect begins to decrease until it tends to classical elasticity theory.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Shuaishuai Hu ◽  
Jiansheng Liu ◽  
Junlin Li

The behavior of a fine-grained piezoelectric coating/substrate with multiple Griffith interface cracks under electromechanical loads is investigated. In this work, double coupled singular integral equations are proposed to solve the fracture problems. Both the singular integral equation and single-valued conditions are simplified into an algebraic equation and solved by numerical calculation. Thereby, the intensity factors of electric displacement and stress obtained are used to obtain the expression of the energy release rate. Furthermore, numerical results of the energy release rate with material parameters are demonstrated. Based on the obtained results, it could be concluded that the energy release rate is closely related to the size of the interface cracks and the mechanical-electrical loading. For a bimaterial structure, the fine-grained piezoelectric structure exhibited better material performance compared to the large one.


2016 ◽  
Vol 51 (5) ◽  
pp. 623-635 ◽  
Author(s):  
M Naghinejad ◽  
H R Ovesy

In the present article, the variational energy principle is used to derive the expression for energy release rate in buckled composite laminate containing through-the-width delamination, subjected to in-plane strains. Boundary conditions are clamped at both edges. Buckling and post-buckling solutions are obtained and expressions for critical buckling load and post-buckling deflection have been developed. A through-the-width delamination model has been considered and formulations are based on higher order shear deformation theory. The effects of considering the higher order shear deformation theory on equivalent bending rigidity, buckling load, and energy release rate have been investigated. Finally, the results of current study have been compared with the results of finite element method analysis by Abaqus/CAE and those available in the literature.


2018 ◽  
Vol 85 (3) ◽  
Author(s):  
Wenhao Shen ◽  
Ya-Pu Zhao

Penny-shaped fluid-driven cracks are often detected in many fluid–solid interaction problems. We study the combined effect of pressure and shear stress on the crack propagation in an impermeable elastic full space. Boundary integral equations are presented, by using the integral transform method, for a penny-shaped crack under normal and shear stresses. The crack propagation criterion of stress intensity factor is examined with the strain energy release rate. Dominant regimes are obtained by using a scaling analysis. Asymptotic solution of the toughness-dominant regime is derived to show the effect of shear stress on the crack opening, crack length, and pressure distribution. The results indicate that a singular shear stress can dominate the asymptotic property of the stress field near the crack tip, and the stress intensity factor cannot be calculated even though the energy release rate is finite. Shear stress leads to a smaller crack opening, a longer crack, and a slightly larger wellbore pressure. A novel dominant-regime transition between shear stress and pressure is found. Unstable crack propagation occurs in the shear stress-dominant regime. This study may help in understanding crack problems under symmetrical loads and modeling fluid–solid interactions at the crack surfaces.


2007 ◽  
Vol 74 (6) ◽  
pp. 1197-1211 ◽  
Author(s):  
H. Jelitto ◽  
F. Felten ◽  
M. V. Swain ◽  
H. Balke ◽  
G. A. Schneider

Four-point-bending V-notched specimens of lead zirconate titanate (PZT) poled parallel to the long axis are fractured under conditions of controlled crack growth in a custom-made device. In addition to the mechanical loading electric fields, up to 500V∕mm are applied parallel and anti-parallel to the poling direction, i.e., perpendicular to the crack surface. To determine the different contributions to the total energy release rate, the mechanical and the piezoelectric compliance, as well as the electrical capacitance of the sample, are recorded continuously using small signal modulation/demodulation techniques. This allows for the calculation of the mechanical, the piezoelectric, and the electrical part of the total energy release rate due to linear processes. The sum of these linear contributions during controlled crack growth is attributed to the intrinsic toughness of the material. The nonlinear part of the total energy release rate is mostly associated to domain switching leading to a switching zone around the crack tip. The measured force-displacement curve, together with the modulation technique, enables us to determine this mechanical nonlinear contribution to the overall toughness of PZT. The intrinsic material toughness is only slightly dependent on the applied electric field (10% effect), which can be explained by screening charges or electrical breakdown in the crack interior. The part of the toughness due to inelastic processes increases from negative to positive electric fields by up to 100%. For the corresponding nonlinear electric energy change during crack growth, only a rough estimate is performed.


Sign in / Sign up

Export Citation Format

Share Document