Molecular Dynamics Studies on the Growth and Structural Properties of Hydrogenated DLC Films

2008 ◽  
Vol 373-374 ◽  
pp. 108-112
Author(s):  
Yu Jun Zhang ◽  
Guang Neng Dong ◽  
Jun Hong Mao ◽  
You Bai Xie

The novel frictional properties of hydrogenated DLC (Diamond-like Carbon) films have been reported for nearly ten years. But up to now, researchers still haven’t known the exact mechanism resulting in the super-low frictional performance of hydrogenated DLC films. Especially they have little knowledge on the molecular configuration and structural properties of these kinds of films. In this paper, CH3 radicals with different impact energies are selected as source species to deposit DLC films on diamond (100) by molecular dynamics simulation. Results show hydrogenated DLC films can be successfully obtained when impact energy is in an appropriate scope that is no less than 20eV. The depositing processes involve impinging diamond surface and bonding procedure. Some atoms, instead of bonding with substrate atoms, fly away from the diamond surface. Only suitable impact energy can improve the growth of the film. Within 30eV to 60eV, the maximum deposition ratio is attained. In addition, when carbon atoms act as the deposition sources, the deposition ratio is relatively higher. Furthermore, the authors find that species with higher concentration of carbon atoms in deposition sources lead to a better deposition rate. Carbon atoms are more reactive than hydrogen atoms. Then the relative densities of DLC films are calculated. The density curves indicate that the structures of the films vary obviously as the impact energy augments. The average relative density is generally monotone increase with the increment of impact energy. The hybridization of carbon atoms greatly affects the properties of hydrogenated DLC films. The transition between sp2 and sp3 will result in the graphitization and reduce the frictional coefficient when DLC films are used as tribo-pair in friction.

2011 ◽  
Vol 194-196 ◽  
pp. 2220-2224
Author(s):  
Hui Qing Lan ◽  
Zheng Ling Kang

The growth of amorphous carbon films via deposition is investigated using molecular dynamics simulation with a modified Tersoff potential. The impact energy of carbon atoms ranges from 1 to 50 eV and the temperature of the diamond substrate is 300 K. The effects of the incident energy on the growth dynamics and film structure are studied in a detail. Simulation results show that the mobility of surface atoms in the cascade region is enhanced by impacting energetic carbon ions, especially at moderate energy, which favors the growth of denser and smoother films with better adhesion to the substrate. Our results agree qualitatively with the experimental observation.


2004 ◽  
Vol 177-178 ◽  
pp. 812-817 ◽  
Author(s):  
Seung-Hyeob Lee ◽  
Churl-Seung Lee ◽  
Seung-Cheol Lee ◽  
Kyu-Hwan Lee ◽  
Kwang-Ryeol Lee

2002 ◽  
Vol 16 (26) ◽  
pp. 3971-3978 ◽  
Author(s):  
A. J. DU ◽  
Z. Y. PAN ◽  
Z. HUANG ◽  
Z. J. LI ◽  
Q. WEI ◽  
...  

In this paper, the initial stage of films assembled by energetic C 36 fullerenes on diamond (001)–(2 × 1) surface at low-temperature was investigated by molecular dynamics simulation using the Brenner potential. The incident energy was first uniformly distributed within an energy interval 20–50 eV, which was known to be the optimum energy range for chemisorption of single C 36 on diamond (001) surface. More than one hundred C 36 cages were impacted one after the other onto the diamond surface by randomly selecting their orientation as well as the impact position relative to the surface. The growth of films was found to be in three-dimensional island mode, where the deposited C 36 acted as building blocks. The study of film morphology shows that it retains the structure of a free C 36 cage, which is consistent with Low Energy Cluster Beam Deposition (LECBD) experiments. The adlayer is composed of many C 36-monomers as well as the covalently bonded C 36 dimers and trimers which is quite different from that of C 20 fullerene-assembled film, where a big polymerlike chain was observed due to the stronger interaction between C 20 cages. In addition, the chemisorption probability of C 36 fullerenes is decreased with increasing coverage because the interaction between these clusters is weaker than that between the cluster and the surface. When the incident energy is increased to 40–65 eV, the chemisorption probability is found to increased and more dimers and trimers as well as polymerlike- C 36 were observed on the deposited films. Furthermore, C 36 film also showed high thermal stability even when the temperature was raised to 1500 K.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 64 ◽  
Author(s):  
Qin Wang ◽  
Hui Xie ◽  
Zhiming Hu ◽  
Chao Liu

In this study, molecular dynamics simulations were carried out to study the coupling effect of electric field strength and surface wettability on the condensation process of water vapor. Our results show that an electric field can rotate water molecules upward and restrict condensation. Formed clusters are stretched to become columns above the threshold strength of the field, causing the condensation rate to drop quickly. The enhancement of surface attraction force boosts the rearrangement of water molecules adjacent to the surface and exaggerates the threshold value for shape transformation. In addition, the contact area between clusters and the surface increases with increasing amounts of surface attraction force, which raises the condensation efficiency. Thus, the condensation rate of water vapor on a surface under an electric field is determined by competition between intermolecular forces from the electric field and the surface.


1993 ◽  
Vol 317 ◽  
Author(s):  
N.A. Marks ◽  
P. Guan ◽  
D.R. Mckenzie ◽  
B.A. PailThorpe

ABSTRACTMolecular dynamics simulations of nickel and carbon have been used to study the phenomena due to ion impact. The nickel and carbon interactions were described using the Lennard-Jones and Stillinger-Weber potentials respectively. The phenomena occurring after the impact of 100 e V to 1 keV ions were studied in the nickel simulations, which were both two and three-dimensional. Supersonic focussed collision sequences (or focusons) were observed, and associated with these focusons were unexpected sonic bow waves, which were a major energy loss mechanism for the focuson. A number of 2D carbon films were grown and the stress in the films as a function of incident ion energy was Measured. With increasing energy the stress changed from tensile to compressive and reached a maximum around 50 eV, in agreement with experiment.


Sign in / Sign up

Export Citation Format

Share Document