ion impact
Recently Published Documents


TOTAL DOCUMENTS

806
(FIVE YEARS 51)

H-INDEX

47
(FIVE YEARS 4)

Author(s):  
Jon Tomas Gudmundsson ◽  
Janez Krek ◽  
De-Qi Wen ◽  
Emi Kawamura ◽  
Michael A Lieberman

Abstract One-dimensional particle-in-cell/Monte Carlo collisional (PIC/MCC) simulations are performed on a capacitive 2.54 cm gap, 1.6 Torr argon discharge driven by a sinusoidal rf current density amplitude of 50 A/m2 at 13.56 MHz. The excited argon states (metastable levels, resonance levels, and the 4p manifold) are modeled self-consistently with the particle dynamics as space- and time-varying fluids. Four cases are examined, including and neglecting excited states, and using either a fixed or energy-dependent secondary electron emission yield due to ion and/or neutral impact on the electrodes. The results for all cases show that most of the ionization occurs near the plasma-sheath interfaces, with little ionization within the plasma bulk region. Without excited states, secondary electrons emitted from the electrodes are found to play a strong role in the ionization process. When the excited states, secondary electron emission due to neutral and ion impact on the electrodes are included in the discharge model, the discharge operation transitions from α-mode to γ-mode, in which nearly all the ionization is due to secondary electrons. Excited states are very effective in producing secondary electrons, with approximately 14.7 times the contribution of ion bombardment. Electron impact of ground state argon atoms by secondary electrons contributes about 76 % of the total ionization; primary electrons, about 11 %; metastable Penning ionization, about 13 %; and multi-step ionization, about 0.3 %.


2021 ◽  
Vol 5 (4) ◽  
pp. 30
Author(s):  
Noriaki Matsunami ◽  
Masao Sataka ◽  
Satoru Okayasu ◽  
Bun Tsuchiya

It has been known that the modification of non-metallic solid materials (oxides, nitrides, etc.), e.g., the formation of tracks, sputtering representing atomic displacement near the surface and lattice disordering are induced by electronic excitation under high-energy ion impact. We have investigated lattice disordering by the X-ray diffraction (XRD) of SiO2, ZnO, Fe2O3 and TiN films and have also measured the sputtering yields of TiN for a comparison of lattice disordering with sputtering. We find that both the degradation of the XRD intensity per unit ion fluence and the sputtering yields follow the power-law of the electronic stopping power and that these exponents are larger than unity. The exponents for the XRD degradation and sputtering are found to be comparable. These results imply that similar mechanisms are responsible for the lattice disordering and electronic sputtering. A mechanism of electron–lattice coupling, i.e., the energy transfer from the electronic system into the lattice, is discussed based on a crude estimation of atomic displacement due to Coulomb repulsion during the short neutralization time (~fs) in the ionized region. The bandgap scheme or exciton model is examined.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6289
Author(s):  
Damjan Iveković ◽  
Petar Žugec ◽  
Marko Karlušić

High energy ion irradiation is an important tool for nanoscale modification of materials. In the case of thin targets and 2D materials, which these energetic ions can pierce through, nanoscale modifications such as production of nanopores can open up pathways for new applications. However, materials modifications can be hindered because of subsequent energy release via electron emission. In this work, we follow energy dissipation after the impact of an energetic ion in thin graphite target using Geant4 code. Presented results show that significant amount of energy can be released from the target. Especially for thin targets and highest ion energies, almost 40% of deposited energy has been released. Therefore, retention of deposited energy can be significantly altered and this can profoundly affect ion track formation in thin targets. This finding could also have broader implications for radiation hardness of other nanomaterials such as nanowires and nanoparticles.


Author(s):  
Chandan Bagdia ◽  
Anuvab Mandal ◽  
Madhusree Roychowdhury ◽  
Shamik Bhattacharjee ◽  
M Nrisimha Murty ◽  
...  
Keyword(s):  

2021 ◽  
Vol 92 (8) ◽  
pp. 084501
Author(s):  
Péter Herczku ◽  
Duncan V. Mifsud ◽  
Sergio Ioppolo ◽  
Zoltán Juhász ◽  
Zuzana Kaňuchová ◽  
...  

Author(s):  
Nirmallya Das ◽  
Pragya Bhatt ◽  
Sankar De ◽  
C.P. Safvan ◽  
Abhijit Majumdar

2021 ◽  
Vol 5 (7) ◽  
Author(s):  
S. Creutzburg ◽  
M. Mergl ◽  
R. Hübner ◽  
I. Jirka ◽  
D. Erb ◽  
...  

Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 36
Author(s):  
Noriaki Matsunami ◽  
Masao Sataka ◽  
Satoru Okayasu ◽  
Bun Tsuchiya

It has been observed that modifications of non-metallic solids such as sputtering and surface morphology are induced by electronic excitation under high-energy ion impact and that these modifications depend on the charge of incident ions (charge-state effect or incident-charge effect). A simple model is described, consisting of an approximation to the mean-charge-evolution by saturation curves and the charge-dependent electronic stopping power, for the evaluation of the relative yield (e.g., electronic sputtering yield) of the non-equilibrium charge incidence over that of the equilibrium-charge incidence. It is found that the present model reasonably explains the charge state effect on the film thickness dependence of lattice disordering of WO3. On the other hand, the model appears to be inadequate to explain the charge-state effect on the electronic sputtering of WO3 and LiF. Brief descriptions are given for the charge-state effect on the electronic sputtering of SiO2, UO2 and UF4, and surface morphology modification of poly-methyl-methacrylate (PMMA), mica and tetrahedral amorphous carbon (ta-C).


Sign in / Sign up

Export Citation Format

Share Document