Determination of Fracture Parameters for Non-Standard Wedge Splitting Specimen of Concrete

2010 ◽  
Vol 452-453 ◽  
pp. 425-428 ◽  
Author(s):  
Yan Hua Zhao ◽  
Hua Zhang ◽  
Wei Dong

The wedge splitting (WS) test is now a promising method to perform stable fracture mechanics tests on concrete-like quasi brittle materials. Fracture parameters, such as fracture toughness and critical crack opening displacement and et.al, are however not easy to determined since formulae available from stress intensity factor manual are restricted to standard specimen geometry. The paper attempts to compute expressions for commonly used fracture parameters for a general wedge splitting specimen. By means of finite element analysis program, test simulation was performed on non-standard wedge splitting specimen with different depth and initiation crack length, and thereafter expressions were proposed for stress intensity factor at the pre-cast tip and crack mouth opening displacement on the load line. Based on the work above, size effect on the unstable fracture toughness and crack extension were investigated, and the consistency of fracture toughness data for various specimen depth as well as initiation crack length is demonstrated. The crack extension is little sensitive to the initiation crack length, it increases with the depth of specimen, which can be explained by the boundary influence of the specimen.

2017 ◽  
Vol 8 (5) ◽  
pp. 506-515 ◽  
Author(s):  
Raviraj M.S. ◽  
Sharanaprabhu C.M. ◽  
Mohankumar G.C.

Purpose The purpose of this paper is to present the determination of critical stress intensity factor (KC) both by experimental method and three-dimensional (3D) finite element simulations. Design/methodology/approach CT specimens of different compositions of Al6061-TiC composites (3wt%, 5wt% and 7wt% TiC) with variable crack length to width (a/W=0.3-0.6) ratios are machined from as-cast composite block. After fatigue pre-cracking the specimens to a required crack length, experimental load vs crack mouth opening displacement data are plotted to calculate the KC value. Elastic 3D finite element simulations have been conducted for CT specimens of various compositions and a/W ratios to compute KC. The experimental results indicate that the magnitude of KC depends on a/W ratios, and significantly decreases with increase in a/W ratios of the specimen. Findings From 3D finite element simulation, the KC results at the centre of CT specimens for various Al6061-TiC composites and a/W ratios show satisfactory agreement with experimental results compared to the surface. Originality/value The research work contained in this manuscript was conducted during 2015-2016. It is original work except where due reference is made. The authors confirm that the research in their work is original, and that all the data given in the article are real and authentic. If necessary, the paper can be recalled, and errors corrected.


2014 ◽  
Vol 592-594 ◽  
pp. 1160-1164 ◽  
Author(s):  
S. Sundaresan ◽  
B. Nageswara Rao

The life expectancy or failure of aerospace pressure vessels is evaluated by the critical stress intensity determined by the crack growth resistance curve of a material. Load versus crack mouth opening displacement data is generated from the Compact Tension specimens made from the weld joints of maraging steel rocket motor segments. The steps involved to generate critical stress intensity factor is explained. A power law is adopted to model the crack extension in terms of stress intensity factor and determine the maximum failure load of weld specimens. Maximum failure loads of CT specimens obtained by test and analysis are presented.


2011 ◽  
Vol 83 ◽  
pp. 28-34
Author(s):  
Keisuke Tanaka ◽  
Yasuki Kita

A sharply notched specimen of porous silicon carbide with porosity of 37% was fatigued under four-point bending. The opening displacement of a fatigue crack was measured at several positions along cracks by using scanning electron microscopy. The crack propagation curve was divided into stages I, II, and III. The crack propagation rate first decreased with crack extension in stage I and became constant in stage II. In stage III, the crack propagation rate increased again. The range of crack opening displacement measured in SEM was lower than that calculated from the applied load range by FEM, suggesting that the anomalous variation of the crack propagation rate with crack extension was caused by crack-tip shielding due to crack face contact. The crack-tip stress intensity factor was estimated as a true crack driving force from the relation between the crack opening displacement and the applied load. The amount of crack-tip shielding increased very quickly with crack extension, reducing the crack-tip stress intensity factor in stage I. In stage II, the increasing applied stress intensity factor is balanced by the increase in the crack-tip shielding. The crack-tip stress intensity factor increases with crack extension in stage III.


Author(s):  
Tongele N. Tongele

Failure characterization of fracture toughness of a plate containing a single through-the-thickness edge crack and subjected to a tensile stress is investigated. The relationship between the varying ratio of crack length to plate width and the stress intensity factor is examined and compared for elastic, elastic-plastic and nonlinear conditions. Using a numerical illustration, it was found that an increasing ratio increases the stress intensity factor and a decreasing ratio decreases the stress intensity factor regardless of the condition. Hence, the ratio of crack length to plate width can be used as a design parameter that affects the fracture toughness and as a tool of predicting condition for failure.


2021 ◽  
Vol 87 (2) ◽  
pp. 56-64
Author(s):  
G. Pluvinage

Different stress distributions for an elastic behavior are presented as analytical expressions for an ideal crack, a sharp notch and a blunt notch. The elastic plastic distribution at a blunt notch tip is analyzed. The concept of the notch stress intensity factor is deduced from the definition of the effective stress and the effective distance. The impacts of the notch radius and constraint on the critical notch stress intensity factor are presented. The paper ends with the presentation of the crack driving force Jρ for a notch in the elastic case and the impact of the notch radius on the notch fracture toughness Jρ,c. The notch fracture toughness Jρ,c is a measure of the fracture resistance which increases linearly with the notch radius due to the plastic work in the notch plastic zone. If this notch plastic zone does not invade totally the ligament, the notch fracture toughness Jρ,c is constant. This occurs when the notch radius is less than a critical one and there is no need to use the cracked specimen to measure a lower bound of the fracture resistance.


Sign in / Sign up

Export Citation Format

Share Document