Elastic-Plastic Stress Singularities of Plane V-Notches in Power-Hardening Materials

2011 ◽  
Vol 465 ◽  
pp. 105-110 ◽  
Author(s):  
Zhong Rong Niu ◽  
Naman Recho ◽  
Zhi Yong Yang ◽  
Chang Zheng Cheng

Extensive studies have been carried out to deal with the stress singularity of V-notch problems in linear elasticity theory. In fact, the plastic deformation consequentially arises in the notch tip region because of the high stress concentration. The solution of linear elasticity is not adequate to explain the fracture failure of V-notch structures. Because of the difficulties of the nonlinear analysis and the singularity behavior, few results are given for the plastic stress singularities of general V-notch structures. In this paper, the plane V-notch structures in a power law hardening materials are considered. The Von Mises yield criterion and the plasticity total theory are adopted when the materials arise in plastic status. Similar to methods used in the elastic analysis, the plastic stress field near V-notch tips is assumed as an asymptotic expansion with respect to the radial coordinate originating from the notch tip. The governing equations of plastic behavior of plane V-notch are transformed to eigenvalue problems of nonlinear ordinary differential equations (ODEs) contained by the stress singularity order and the associated eigenfunctions. Consequently all of the stress singularities who are less than zero and the associated eigenvectors are accurately determined for the plane V-notches with arbitrary opening angle.

2014 ◽  
Vol 627 ◽  
pp. 165-168
Author(s):  
Kateřina Štegnerová ◽  
Luboš Náhlík ◽  
Pavel Hutař

The aim of this paper is to estimate a value of the critical applied force for a crack initiation from the sharp V-notch tip. The classical approach of the linear elastic fracture mechanics (LELM) was generalized, because the stress singularity exponent differs from 0.5 in studied case. The value of the stress singularity exponent depends on the V-notch opening angle. The finite element method was used for a determination of stress distribution in the vicinity of the sharp V-notch tip and for the estimation of the generalized stress intensity factor depending on the V-notch opening angle. Critical value of generalized stress intensity factor was obtained by using stability criterion based on the tangential stress component averaged over a critical distancedfrom the V-notch tip. Calculated values of the critical applied force were compared with experimental data taken from the literature.


1997 ◽  
Vol 64 (3) ◽  
pp. 525-531 ◽  
Author(s):  
Wen-Hwa Chen ◽  
Tain-Fu Huang

By utilizing the general solutions derived for the plies with arbitrary fiber orientations under uniform axial strain (Huang and Chen, 1994), the explicit solutions of the edge-delamination stress singularities for the angle-ply and cross-ply laminates are obtained. The dominant edge-delamination stress singularities for the angle-ply laminates are found to be a real constant, −1/2, and a pair of complex conjugates, −1/2±i/2πln{(b+b2−a2)/a}. For the cross-ply laminates, the significant effect of transverse shear stresses of the laminate is considered and the dominant edge-delamination stress singularities are shown as −1/2 and −1/2±i/2πln{(c2+c22−4c1c3)/2c1}. a, b, cl, c2, and c3 are the corresponding combined complex constants. In addition, two elementary forms of edge-delamination stress singularity, say, r−1/2 and rδr(lnr)n(δr=n−3/2,n=1,2...) exist for both the angle-ply and cross-ply laminates. Excellent correlations between the present results and available solutions show the validity of the approach. The deficiencies of the solutions available in the literature are compensated. New results for other angle-ply and cross-ply laminates are also provided.


2000 ◽  
Vol 122 (4) ◽  
pp. 301-305 ◽  
Author(s):  
A. Q. Xu ◽  
H. F. Nied

Cracking and delamination at the interfaces of different materials in plastic IC packages is a well-known failure mechanism. The investigation of local stress behavior, including characterization of stress singularities, is an important problem in predicting and preventing crack initiation and propagation. In this study, a three-dimensional finite element procedure is used to compute the strength of stress singularities at various three-dimensional corners in a typical Flip-Chip assembled Chip-on-Board (FCOB) package. It is found that the stress singularities at the three-dimensional corners are always more severe than those at the corresponding two-dimensional edges, which suggests that they are more likely to be the potential delamination sites. Furthermore, it is demonstrated that the stress singularity at the upper silicon die/epoxy fillet edge can be completely eliminated by an appropriate choice in geometry. A weak stress singularity at the FR4 board/epoxy edge is shown to exist, with a stronger singularity located at the internal die/epoxy corner. The influence of the epoxy contact angle and the FR4 glass fiber orientation on stress state is also investigated. A general result is that the strength of the stress singularity increases with increased epoxy contact angle. In addition, it is shown that the stress singularity effect can be minimized by choosing an appropriate orientation between the glass fiber in the FR4 board and the silicon die. Based on these results, several guidelines for minimizing edge stresses in IC packages are presented. [S1043-7398(00)00904-X]


2005 ◽  
Vol 8 (2) ◽  
pp. 143-156 ◽  
Author(s):  
J. Kent Hsiao ◽  
Janice J. Chambers ◽  
William J. Schultz

The ductility capacity of the directly welded flange connection was found to be insufficient after the 1994 Northridge earthquake. The Enlarged End Section (EES) connection which considers the stress singularity effect on beam flanges can be utilized as a means to improve the performance of welded moment connections. The corner of a steel plate contains stress singularities (unbounded stresses) when the corner is bounded by free-free edges and when the angle of the corner is larger than 180°. Also, the corner of a steel plate contains stress singularities when the corner is bounded by fixed-free edges and when the angle of the corner is larger than 61.3°. Nonlinear static finite element analyses of two types of beam-to-column moment connections were conducted. These two types of connections are (1) the constant-beam-section connection, and (2) the Enlarged End Section connection. The result of the finite element analyses shows that the Enlarged End Section connection exhibits much higher strength and ductility capacities.


1986 ◽  
Vol 22 (1) ◽  
pp. 25-30 ◽  
Author(s):  
H. Awaji ◽  
A.Toshimitsu Yokobori ◽  
Yokobori Takeo

Sign in / Sign up

Export Citation Format

Share Document