Processing and Characterization of an Al2O3/TiCN Micro-Nano-Composite Graded Ceramic Tool Material

2012 ◽  
Vol 499 ◽  
pp. 132-137
Author(s):  
Z.J. Gao ◽  
Jun Zhao ◽  
Guang Ming Zheng

In this study, an Al2O3-based functionally graded ceramic tool material reinforced with TiCN micro-particles and nano-Al2O3 particles was fabricated by using hot-pressing technique. The experimental results showed that optimal mechanical properties were achieved for the composite with the addition of nano-Al2O3 particles increasing from 10vol.% in the surface to 20vol.% in the core, with the flexural strength, fracture toughness and Vicker’s hardness being 1073MPa, 5.99MPa.m1/2 and 21.78GPa, respectively. The microstructure and phase composition of the composites were characterized with SEM, TEM and XRD. It is believed that addition of nano-Al2O3 increasing from the surface to the core, which developed an nano-particles-rich tougher core and a hard Al2O3/TiCN-rich surface, improved the integrated mechanical properties of micro-nano-composite graded ceramic material.

2010 ◽  
Vol 443 ◽  
pp. 244-249 ◽  
Author(s):  
Yong Hui Zhou ◽  
Jun Zhao ◽  
Xing Ai

An Al2O3-based composite ceramic cutting tool material reinforced with (W, Ti)C micro-particles and Al2O3 micro-nano-particles was fabricated by using hot-pressing technique, the composite was denoted as AWT. The cutting performance, failure modes and mechanisms of the AWT micro-nano-composite ceramic tool were investigated via continuous turning of hardened AISI 1045 steel in comparison with those of an Al2O3/(W, Ti)C micro-composite ceramic tool SG-4 and a cemented carbide tool YS8. Worn and fractured surfaces of the cutting tools were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of continuous turning revealed that tool lifetime of the AWT ceramic tool was higher than that of the SG-4 and YS8 tools at all the tested cutting speeds. The longer tool life of the AWT composite ceramic tool was attributed to its synergistic strengthening/toughening mechanisms induced by the (W, Ti)C micro-particles and Al2O3 nano-particles.


2011 ◽  
Vol 335-336 ◽  
pp. 736-739
Author(s):  
Xing Li ◽  
Bin Fang ◽  
Xiu Guo Xu ◽  
Chong Hai Xu

The Al2O3(nm)/SiC(μm)/Al2O3(μm)ceramic tool materials were fabricated by the hot-pressing technique. Effect of the compositions on microstructure and mechanical properties is investigated. With nano-particles content decreasing, the flexural strength increased and fine grains can be obtained. When the nano-alumina content is 60wt%, the grain of this sample is fine, the Vickers hardness and flexural strength are 16.24 GPa and 678 MPa, respectively.


2013 ◽  
Vol 589-590 ◽  
pp. 307-311 ◽  
Author(s):  
Xiu Guo Xu ◽  
Chong Hai Xu ◽  
Bin Fang ◽  
Chun Lin Wang ◽  
Ming Dong Yi

TiB2/WC/h-BN micro-nano composite gradient self-lubricating ceramic tool material was prepared by vacuum hot-pressing technique. The mechanical properties were tested and compared. The best flexural strength, fracture toughness and Vickers hardness of the tool material were 678MPa, 4.75MPa·m1/2 and 15.1GPa, respectively. The microstructure was analyzed by thermal field emission scanning electron microscope (SEM). TiB2 nanoparticles were obviously observed in the ceramic matrix. It suggested that the developed TiB2/WC/h-BN micro-nano composite gradient self-lubricating ceramic tool materials will have potential application in dry machining.


2021 ◽  
Vol 47 (10) ◽  
pp. 14551-14560
Author(s):  
Shuai Zhang ◽  
Guangchun Xiao ◽  
Zhaoqiang Chen ◽  
Lianggang Ji ◽  
Chonghai Xu ◽  
...  

2013 ◽  
Vol 770 ◽  
pp. 308-311 ◽  
Author(s):  
Ming Dong Yi ◽  
Chong Hai Xu ◽  
Zhao Qiang Chen ◽  
Guang Yong Wu

A new nanomicro composite self-lubricating ceramic tool material was prepared with vacuum hot pressing technique. The effect of nanoAl2O3 powders on the microstructure and mechanical properties of nanomicro composite self-lubricating ceramic tool material was investigated. With the increase of nanoAl2O3 content, the hardness and fracture toughness first up then down. When the nanoAl2O3 content is 4 vol.%, the flexural strength, hardness and fracture toughness reaches 562 MPa, 8.46 MPa·m1/2 and 18.95 GPa, respectively. The microstructure and mechanical property of nanomicro composite self-lubricating ceramic tool material can be improved by the grain refinement strengthening of nanoAl2O3.


2011 ◽  
Vol 335-336 ◽  
pp. 688-694
Author(s):  
Xiao Hui Zhu ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu

Based on the microstructure results of Monte Carlo simulation, a three-dimensional grid model is built up, and imported into the finite element software with C++ language to analyze the mechanical properties of ceramic tool material. The stress field and residual stress of single-phase and multiphase ceramics have been analyzed by the computer simulation technology.


2012 ◽  
Vol 723 ◽  
pp. 56-61
Author(s):  
Yong Hui Zhou ◽  
Jun Zhao ◽  
Xiao Bin Cui

An Al2O3-based micro-nano-composite ceramic cutting tool material reinforced with (W, Ti)C micro-particles and Al2O3 micro-nano-particles was fabricated by using hot-pressing technique, the composite was denoted as AWT. The cutting performance, failure modes and mechanisms of the AWT micro-nano-composite ceramic tool were investigated via intermittent turning of hardened AISI 1045 steel (44~48 HRC) in comparison with those of an Al2O3/(W, Ti)C micro-composite ceramic tool SG-4 and a cemented carbide tool YS8. Worn and fractured surfaces of the cutting tools were characterized by scanning electron microscopy (SEM). The results of intermittent turning revealed that shock resistance of the AWT ceramic tool was higher than that of the SG-4 and YS8 tools at all the tested cutting speeds. The excellent shock resistance of the AWT composite ceramic tool was attributed to its synergistic strengthening/toughening mechanisms induced by the (W, Ti)C micro-particles and Al2O3 nano-particles.


Sign in / Sign up

Export Citation Format

Share Document