Improved Multi-Scale Segmentation Algorithm for High Spatial Resolution Remote Sensing Images

2012 ◽  
Vol 500 ◽  
pp. 780-784
Author(s):  
Rui Liu ◽  
Shi Xin Wang ◽  
Yi Zhou ◽  
Zhen Feng Shao

An improved multi-scale segmentation algorithm is proposed in this paper. In order to get segmentation result more efficiently and accurately, watershed transformation is used as an initial segmentation algorithm, and then the objects of regions are merged based on the improved merge rule. The improved regulation for region merging is mainly based on the scale parameter of area-based while the heterogeneity parameter is considered as well. In this way, the failure of considering that some regions with large heterogeneity with their neighborhood are not suitable for merging will be prevented. Experimental results show that the quality and efficiency of remote sensing image segmentation can be greatly improved by the improved multi-scale segmentation algorithm.

Author(s):  
Y. Di ◽  
G. Jiang ◽  
L. Yan ◽  
H. Liu ◽  
S. Zheng

Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA) on the accuracy and slightly inferior to FNEA on the efficiency.


Author(s):  
Y. Chen ◽  
D. Ming

<p><strong>Abstract.</strong> In recent years, considerable attention has been paid to integrate convolutional neural network (CNN) with land cover classification of high spatial resolution remote sensing image. Per-pixel classification method based on CNN (Per-pixel CNN) achieved higher accuracy with the help of high-level features, however, this method still has limitations. Even though per-superpixel classification method based on CNN (Per-superpixel CNN) overcome the limitations of per-pixel CNN, classification accuracy of complex urban is easily influenced by scale effect. To solve this issue, superpixel classification method combining multi-scale CNN (Per-superpixel MCNN) method is proposed. Besides, this paper proposes a novel spatial statistics based method to estimate applicable scale parameter of per-superpixel CNN. Experiments using proposed method were performed on Digital Orthophoto Quarer Quad (DOQQ) images in urban and suburban area. Classification results show that per-superpixel MCNN can effectively avoid misclassification in complex urban area compared with per-superpixel classification method combining single-scale CNN (Per-superpixel SCNN). Series of classification results also show that using the pre-estimated scale parameter can guarantee high classification accuracy, thus arbitrary nature of scale estimation can be avoided to some extent.</p>


Optik ◽  
2014 ◽  
Vol 125 (19) ◽  
pp. 5588-5595 ◽  
Author(s):  
Chao Wang ◽  
Ai-Ye Shi ◽  
Xin Wang ◽  
Fang-ming Wu ◽  
Feng-Chen Huang ◽  
...  

2020 ◽  
Vol 12 (23) ◽  
pp. 3983
Author(s):  
Qiqi Zhu ◽  
Zhen Li ◽  
Yanan Zhang ◽  
Qingfeng Guan

Building extraction is a binary classification task that separates the building area from the background in remote sensing images. The conditional random field (CRF) is directly modelled by the maximum posterior probability, which can make full use of the spatial neighbourhood information of both labelled and observed images. CRF is widely used in building footprint extraction. However, edge oversmoothing still exists when CRF is directly used to extract buildings from high spatial resolution (HSR) remote sensing images. Based on a computer vision multi-scale semantic segmentation network (D-LinkNet), a novel building extraction framework is proposed, named multiscale-aware and segmentation-prior conditional random fields (MSCRF). To solve the problem of losing building details in the downsampling process, D-LinkNet connecting the encoder and decoder is correspondingly used to generate the unary potential. By integrating multi-scale building features in the central module, D-LinkNet can integrate multiscale contextual information without loss of resolution. For the pairwise potential, the segmentation prior is fused to alleviate the influence of spectral diversity between the building and the background area. Moreover, the local class label cost term is introduced. The clear boundaries of the buildings are obtained by using the larger-scale context information. The experimental results demonstrate that the proposed MSCRF framework is superior to the state-of-the-art methods and performs well for building extraction of complex scenes.


2021 ◽  
Vol 13 (10) ◽  
pp. 1903
Author(s):  
Zhihui Li ◽  
Jiaxin Liu ◽  
Yang Yang ◽  
Jing Zhang

Objects in satellite remote sensing image sequences often have large deformations, and the stereo matching of this kind of image is so difficult that the matching rate generally drops. A disparity refinement method is needed to correct and fill the disparity. A method for disparity refinement based on the results of plane segmentation is proposed in this paper. The plane segmentation algorithm includes two steps: Initial segmentation based on mean-shift and alpha-expansion-based energy minimization. According to the results of plane segmentation and fitting, the disparity is refined by filling missed matching regions and removing outliers. The experimental results showed that the proposed plane segmentation method could not only accurately fit the plane in the presence of noise but also approximate the surface by plane combination. After the proposed plane segmentation method was applied to the disparity refinement of remote sensing images, many missed matches were filled, and the elevation errors were reduced. This proved that the proposed algorithm was effective. For difficult evaluations resulting from significant variations in remote sensing images of different satellites, the edge matching rate and the edge matching map are proposed as new stereo matching evaluation and analysis tools. Experiment results showed that they were easy to use, intuitive, and effective.


2021 ◽  
Vol 10 (7) ◽  
pp. 488
Author(s):  
Peng Li ◽  
Dezheng Zhang ◽  
Aziguli Wulamu ◽  
Xin Liu ◽  
Peng Chen

A deep understanding of our visual world is more than an isolated perception on a series of objects, and the relationships between them also contain rich semantic information. Especially for those satellite remote sensing images, the span is so large that the various objects are always of different sizes and complex spatial compositions. Therefore, the recognition of semantic relations is conducive to strengthen the understanding of remote sensing scenes. In this paper, we propose a novel multi-scale semantic fusion network (MSFN). In this framework, dilated convolution is introduced into a graph convolutional network (GCN) based on an attentional mechanism to fuse and refine multi-scale semantic context, which is crucial to strengthen the cognitive ability of our model Besides, based on the mapping between visual features and semantic embeddings, we design a sparse relationship extraction module to remove meaningless connections among entities and improve the efficiency of scene graph generation. Meanwhile, to further promote the research of scene understanding in remote sensing field, this paper also proposes a remote sensing scene graph dataset (RSSGD). We carry out extensive experiments and the results show that our model significantly outperforms previous methods on scene graph generation. In addition, RSSGD effectively bridges the huge semantic gap between low-level perception and high-level cognition of remote sensing images.


2015 ◽  
Vol 109 ◽  
pp. 108-125 ◽  
Author(s):  
Xinghua Li ◽  
Nian Hui ◽  
Huanfeng Shen ◽  
Yunjie Fu ◽  
Liangpei Zhang

Sign in / Sign up

Export Citation Format

Share Document