Influence of Extrusion Methods on Microstructure of Mg-Al-Zn Alloy

2013 ◽  
Vol 575-576 ◽  
pp. 402-405
Author(s):  
Yun Cai ◽  
Guirong Li ◽  
Xue Ting Yuan ◽  
Hong Ming Wang ◽  
Yu Tao Zhao ◽  
...  

The correlation between the deformation behavior and the microstructure of AZ31 magnesium alloy processed by as-extruded and ECAP is investigated in this paper. The grain size of as-extruded AZ31 magnesium alloy is about 30μm which dues to basal and twinning. Twinning is the main deformation behavior for as-extruded AZ31 magnesium alloy. The deformation of as-extruded is mainly caused by basal slip and twinning. The grains of ECAP are further refined to 6μm. With little amount of twins, the refinement of AZ31 magnesium alloy is caused by non-basal sliding. For ECAP precessed sample, grain boundary sliding happens and the proportion of high-angle grains are improved, which makes grain boundary sliding easier. The main deformation mechanism of ECAP is non-basal slip and grains boundary sliding.

2003 ◽  
Vol 419-422 ◽  
pp. 237-242 ◽  
Author(s):  
R. Ohyama ◽  
Junichi Koike ◽  
T. Kobayashi ◽  
Mayumi Suzuki ◽  
Kouichi Maruyama

2012 ◽  
Vol 735 ◽  
pp. 67-72
Author(s):  
Kunio Funami ◽  
Daisuke Yamashita ◽  
Kohji Suzuki ◽  
Masafumi Noda

Abstract. This study examined the critical plastic formability limit of a fine-structure AZ31 magnesium alloy plate under warm and high temperature based on the strength of a magnesium alloy that has cavities at room temperature. The cyclic hot free-forging process as pre-form working following rolling at a light reduction ratio fabricated a fine-structure AZ31 magnesium alloy plate. The appearance of the cavities was examined in detail together with changes in the structure and preparation methods before further damage at high temperatures with increasing uni-and biaxial plastic deformation. The allowable deformation limit in the super plasticity process can be estimated from the strength of the deformed material and forming limit diagram (FLD) at room temperature. During high-temperature deformation, cavities are produced by stress concentrations at grain boundary triple points and striation bands due to grain boundary sliding. The cavitations growth behavior is dependent upon deformation conditions, and a high percentage of large cavities occupy the sample surface as a large amount of grain boundary sliding is present, i.e., as uniform elongation grows larger, the cavity size also increases. In a case where 200% uniaxial strain was applied to a fine-grained structure material at a temperature of 623K under a strain rate of 10-4s-1, the tensile strength at room temperature decreased about 13%, and elongation was 10% less, compared with that of a material to which no load was applied due to the influence of cavities. In a case of biaxial deformation, the values were 28% lower. It is possible to draw a FLD based on the cavity incidence fraction .


2016 ◽  
Vol 669 ◽  
pp. 171-177 ◽  
Author(s):  
Peiman Shahbeigi Roodposhti ◽  
Apu Sarkar ◽  
Korukonda Linga Murty ◽  
Harold Brody ◽  
Ronald Scattergood

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5351
Author(s):  
Ahmed Tamer AlMotasem ◽  
Matthias Posselt ◽  
Tomas Polcar

In the present work, modified embedded atom potential and large-scale molecular dynamics’ simulations were used to explore the effect of grain boundary (GB) segregated foreign interstitials on the deformation behavior of nanocrystalline (nc) iron. As a case study, carbon and nitrogen (about 2.5 at.%) were added to (nc) iron. The tensile test results showed that, at the onset of plasticity, grain boundary sliding mediated was dominated, whereas both dislocations and twinning were prevailing deformation mechanisms at high strain. Adding C/N into GBs reduces the free excess volume and consequently increases resistance to GB sliding. In agreement with experiments, the flow stress increased due to the presence of carbon or nitrogen and carbon had the stronger impact. Additionally, the simulation results revealed that GB reduction and suppressing GBs’ dislocation were the primary cause for GB strengthening. Moreover, we also found that the stress required for both intragranular dislocation and twinning nucleation were strongly dependent on the solute type.


2011 ◽  
Vol 291-294 ◽  
pp. 1173-1177
Author(s):  
Zi Ling Xie ◽  
Lin Zhu Sun ◽  
Fang Yang

A theoretical model is developed to account for the effects of strain rate and temperature on the deformation behavior of ultrafine-grained fcc Cu. Three mechanisms, including dislocation slip, grain boundary diffusion, and grain boundary sliding are considered to contribute to the deformation response simultaneously. Numerical simulations show that the strain rate sensitivity increases with decreasing grain size and strain rate, and that the flow stress and tensile ductility increase with either increasing strain rate or decreasing deformation temperature.


2010 ◽  
Vol 654-656 ◽  
pp. 607-610 ◽  
Author(s):  
Koji Hagihara ◽  
Akihito Kinoshita ◽  
Yuya Sugino ◽  
Michiaki Yamasaki ◽  
Yoshihito Kawamura ◽  
...  

Deformation mechanisms of Mg89Zn4Y7 (at.%) extruded alloy, which is mostly composed of LPSO-phase, was investigated focusing on their temperature dependence. The yield stress of as-extruded alloy showed extremely high value of ~480 MPa at RT, but it largely decreased to ~130 MPa at 300 °C. The decreasing rate of the yield stress could be significantly reduced, however, by the annealing of specimen at 400 °C, by suppressing the microyielding which is considered to occur related by the grain boundary sliding in restricted regions. The yield stress of the annealed specimens with random textures could be estimated by the Hall-Petch relationship by regarding the length of long-axis of plate-like grains as a grain size between RT and 300 °C. The yield stress of the annealed specimens maintained high values even at 200°C, but it also showed large decreases at 300 °C.


Sign in / Sign up

Export Citation Format

Share Document