Modelling of Thermal Fracture of Functionally Graded/Homogeneous Bimaterial Structures under Thermo-Mechanical Loading

2013 ◽  
Vol 592-593 ◽  
pp. 145-148 ◽  
Author(s):  
Vera Petrova ◽  
Siegfried Schmauder

Mathematical modeling of thermal fracture of functionally graded/homogeneous bimaterial structures with a system of arbitrarily located cracks is performed and based on the previously suggested theoretical approach [1-which used the integral equation method. It is supposed that the structure is subjected to thermal loading (a thermal flux) and mechanical loading (a tension). The properties of the functionally graded material (FGM) are described by a continuous exponential function. The main fracture characteristics (stress intensity factors and fracture angles) are presented as functions of the geometry of the problem and special inhomogeneity parameters of FGMs. Some typical crack patterns for FGM/homogeneous bimaterial structures resulting from experiments available in literature are studied in detail. Thermal fracture of actual material combinations of FGMs such as: ceramic/ceramic, e.g., TiC/SiC, MoSi2/Al2O3and MoSi2/SiC, and also ceramic/metal FGMs, e.g., zirconia/nickel and zirconia/steel, is investigated.

2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Bora Yıldırım ◽  
Suphi Yılmaz ◽  
Suat Kadıoğlu

The objective of this study is to investigate a particular type of crack problem in a layered structure consisting of a substrate, a bond coat, and an orthotropic functionally graded material coating. There is an internal crack in the orthotropic coating layer. It is parallel to the coating bond-coat interface and perpendicular to the material gradation of the coating. The position of the crack inside the coating is kept as a variable. Hence, the case of interface crack is also addressed. The top and bottom surfaces of the three layer structure are subjected to different temperatures and a two-dimensional steady-state temperature distribution develops. The case of compressively stressed coating is considered. Under this condition, buckling can occur, the crack can propagate, and the coating is prone to delamination. To predict the onset of delamination, one needs to know the fracture mechanics parameters, namely, Mode I and Mode II stress intensity factors and energy release rates. Hence, temperature distributions and fracture parameters are calculated by using finite element method and displacement correlation technique. Results of this study present the effects of boundary conditions, geometric parameters (crack length and crack position), and the type of gradation on fracture parameters.


2018 ◽  
Vol 53 (14) ◽  
pp. 1883-1896
Author(s):  
Ren Xiaohui ◽  
Wu Zhen

A refined sinusoidal model considering transverse normal strain has been developed for thermoelastic analysis of functionally graded material plate. Although transverse normal strain has been considered, the additional displacement parameters are not increased as transverse normal strain only includes the thermal expansion coefficient and thermal loading. Moreover, the merit of the previous sinusoidal model satisfying tangential stress-free boundary conditions on the surfaces can be maintained. It is important that the effects of transverse normal thermal deformation are incorporated in the in-plane displacement field, which can actively influence the accuracy of in-plane stresses. To assess the performance of the proposed model, the thermoelastic behaviors of functionally graded material plates with various configurations have been analyzed. Without increase of displacement variables, accuracy of the proposed model can be significantly improved by comparing to the previous sinusoidal model. Agreement between the present results and quasi-dimensional solutions are very good, and the proposed model only includes the five displacement variables which can illustrate the accuracy and effectiveness of the present model. In addition, new results using several models considered in this paper have been presented, which can serve as a reference for future investigations.


2019 ◽  
Vol 207 ◽  
pp. 845-857 ◽  
Author(s):  
Victor M. Franco Correia ◽  
J.F. Aguilar Madeira ◽  
Aurélio L. Araújo ◽  
Cristóvão M. Mota Soares

2013 ◽  
Vol 81 (1) ◽  
Author(s):  
S. E. Esfahani ◽  
Y. Kiani ◽  
M. Komijani ◽  
M. R. Eslami

Small amplitude vibrations of a functionally graded material beam under in-plane thermal loading in the prebuckling and postbuckling regimes is studied in this paper. The material properties of the FGM media are considered as function of both position and temperature. A three parameters elastic foundation including the linear and nonlinear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The solution is sought in two regimes. The first one, a static phase with large amplitude response, and the second one, a dynamic regime near the static one with small amplitude. In both regimes, nonlinear governing equations are discretized using the generalized differential quadrature (GDQ) method and solved iteratively via the Newton–Raphson method. It is concluded that depending on the type of boundary condition and loading type, free vibration of a beam under in-plane thermal loading may reach zero at a certain temperature which indicates the existence of bifurcation type of instability.


2017 ◽  
Vol 39 (4) ◽  
pp. 329-338
Author(s):  
Dang Thuy Dong ◽  
Dao Van Dung

In part 1, the governing nonlinear dynamic equations of FGM sandwich doubly curved shallow shells reinforced by FGM stiffeners on elastic foundation subjected to mechanical and thermal loading are established based on the first order shear deformation theory (FSDT) with von Kármán - type nonlinearity and smeared stiffener technique. In the present part, the fourth-order Runge-Kutta method is applied to investigate influences of models of the shells, FGM stiffeners, thermal environment, elastic foundation, and geometrical parameters on the natural frequencies and dynamic nonlinear responses of stiffened FGM sandwich doubly curved shallow shells.


Sign in / Sign up

Export Citation Format

Share Document