Preparation of Calcium Phosphate Cement Utilizing Dicalcium Phosphate Dihydrate and Calcium Carbonate

2014 ◽  
Vol 608 ◽  
pp. 280-286
Author(s):  
Nudthakarn Kosachan ◽  
Angkhana Jaroenworaluck ◽  
Sirithan Jiemsirilers ◽  
Supatra Jinawath ◽  
Ron Stevens

Calcium phosphate cement has been widely used as a bone substitute because of its chemical similarity to natural bone. In this study, calcium phosphate cement was prepared using dicalcium phosphate dihydrate (CaHPO4.2H2O) and calcium carbonate (CaCO3) as starting raw materials. The cement pastes were mixed and the chemistry adjusted with two different aqueous solutions of sodium hydroxide (NaOH) and disodium hydrogen phosphate (Na2HPO4). Concentrations of the solution were varied in the range 0.5 to 5.0 mol/L with the ratio of solid/liquid = 2 g/ml. The cement paste was then poured into a silicone mold having a diameter of 10 mm and a height 15 mm. Setting times for the cement were measured using a Vicat apparatus. XRD, FT-IR, and SEM techniques were used to characterize properties and microstructure of the cement. From the experimental results, it is clear that different concentrations of Na2HPO4 and NaOH have affected the setting times of the cement. The relationship between concentration of NaOH and Na2HPO4 and setting time, including final properties of the cement, is discussed.

2008 ◽  
Vol 396-398 ◽  
pp. 225-228 ◽  
Author(s):  
Solene Tadier ◽  
Nadine Le Bolay ◽  
S. Girod Fullana ◽  
Christian Rey ◽  
Christèle Combes

The purpose of this study was to improve injectability and cohesiveness of original calcium carbonate-calcium phosphate mixed (CaCO3-CaP) self-setting paste for bone filling and repair. With this aim in view dry co-grinding was implemented on the solid phase (vaterite and dicalcium phosphate dihydrate) of this cement. A protocol designed to quantify paste injectability has been established and pointed out the synergistic positive effects of solid phase co-grinding treatment on injectability, cohesiveness and setting time of the paste. The improvement of these properties are related to close and homogeneous association of reactive powders and to the decrease of specific surface area favoring the powders hydration process enhancing setting reaction rate. In addition, the particle size decrease and morphology modification improved flowability of the paste which results in a low and constant (320 g) force level to extrude the paste.


2011 ◽  
Vol 493-494 ◽  
pp. 832-835 ◽  
Author(s):  
Ishikawa Kunio ◽  
Kanji Tsuru ◽  
Trung Kien Pham ◽  
Michito Maruta ◽  
Shigeki Matsuya

Calcium phosphate cement that foams fully-interconnected porous structure along with its gradual replacement to bone may be ideal for bone defect reconstruction. In the present study, α-tricalcium phosphate (αTCP) microspheres were exposed to acidic calcium phosphate solution. It was found that the αTCP microspheres set in approximately 10 min to form fully-interconnected porous structure. The porosity was approximately 50% and the pore size was 300µm. The surface of the porous body was dicalcium phosphate dihydrate whereas the inside was αTCP.


2016 ◽  
Vol 696 ◽  
pp. 32-35
Author(s):  
Tai Joo Chung ◽  
Kyung Sik Oh

The cause of the degradation was analyzed by applying the highly humid conditions during the storage of cement composed of β-tricalcium phosphate (β-TCP) and monocalcium phosphate monohydrate (MCPM). For the β-TCP and MCPM stored separately under the humid environment, the mild increase in the setting time was observed, and the product after the setting was entirely dicalcium phosphate dihydrate (CaHPO42H2O: DCPD). However, for the β-TCP and MCPM stored mixed under the same condition, the setting time significantly increased with the period of storage, and the product contained dicalcium phosphate (CaHPO4: DCP) as major phase, resulting in the loss of setting ability. The formation of DCP could be because of the weak driving force for setting, caused by a feeble supply of water from moisture. As the formation of DCPD requires stronger driving force to overcome the activation barrier, sufficient amount of water is essential. Humid environment during the storage decreased the driving force by the formation of DCP, and the driving force to produce DCPD was lost during the actual setting.


2013 ◽  
Vol 788 ◽  
pp. 119-126 ◽  
Author(s):  
Bin Chu ◽  
Jian Xiong ◽  
Ming Bo Wang ◽  
Xiao Li Li ◽  
Zhen Ding She

The solidification time of injectable bone cement should be fit for the clinical application. This research find out the effect of the amount of water-absorbent agent and water-retaining agent. The optimal ratio was be determined. The hydroxyapatite fibers with strontium were added into the CPC. The mechanical property, cytotoxicity test, SEM morphology, XRD and degradation performance in vitro were characterized, respectively. The results show the CPC had the solidification time of 12min when the ratio as below: β-TCP 55.5%, Ca (H2PO4)2H2O(MCPM)36%, MgHPO43H2O 5%, MgSO41%, Sodium pyrophosphate2.5%. The main components of solidify CPC were hydroxyapatite (HA) and dicalcium phosphate dihydrate (DCPD). The materials had a good Anti-collapsing performance and the degradation rate up to 16.72% after 9 weeks. The mechanical property of composite materials which combined with hydroxyapatite fibers with strontium has been improved, and the cell proliferation rate is also higher than common CPC. This study shows a potentially effective method to improve the mechanical property and the biological activity of calcium phosphate cement.


2021 ◽  
pp. 088532822110201
Author(s):  
Wenjing Xi ◽  
Zhengwen Ding ◽  
Haohao Ren ◽  
Hong Chen ◽  
Yonggang Yan ◽  
...  

In this work, a modified dicalcium phosphate dihydrate (DCPD) bone cement with unique biodegradable ability in a calcium phosphate cement system was prepared by the hydration reaction of monocalcium phosphate monohydrate and calcium oxide and integration with pullulan (Pul), a non-toxic, biocompatible, viscous, and water-soluble polysaccharide that has been successfully used to improve defects in DCPD bone cement, especially its rapid solidification, fragile mechanical properties, and easy collapse. The effect of different contents of Pul on the structure and properties of DCPD were also studied in detail. The modified cement was characterised by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, ultraviolet–visible absorption, X-ray photoelectron spectroscopy analysis, and rheological property measurements. The results indicated that Pul promoted the hydration formation of DCPD, and interface bonding occurred between Pul and DCPD. With increasing content of Pul, the setting time of the DCPD bone cement increased from 2.6 min to 42.3 min, the compressive strength increased from 0 MPa to 20.4 MPa, and the anti-collapse ability also improved owing to the strong interface bonding, implying that the DCPD bone cement improved by Pul has better potential for application in the field of non-loading bone regenerative medicine compared to unmodified DCPD bone cement.


Sign in / Sign up

Export Citation Format

Share Document