Study on Very-High-Cycle-Fatigue Property of Aero-Engine Blades Based on Subcomponent Specimen

2015 ◽  
Vol 664 ◽  
pp. 87-95
Author(s):  
Sheng Bo Jiao ◽  
Li Cheng ◽  
Quan Tong Li ◽  
Xiao Wei Li

The cyclic load number of aero-engine blade during its service life is very likely beyond 107, which is regarded as the conventional fatigue limit. Moreover, surface strengthening is very often used in the manufacturing process of blade. The conventional testing method in the VHCF regime cannot exactly reflect the stress state of the blade, including the mechanism of crack initiation. To study the fatigue behavior and effects of laser shock peening, a kind of bending fatigue subcomponent specimen was designed and the laser shock peening model was established. Experiment about TC17 was accomplished by the Ulra-High Cycle bending fatigue system. It is found that the fatigue damage occurs beneath the surface and the S-N curve is continuously rather than multi-step declining in the VHCF regime. Process of surface strengthening has a significant effect on fatigue performance of TC17 titanium alloy.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1082
Author(s):  
Rujian Sun ◽  
Ziwen Cao ◽  
Yongxin Zhang ◽  
Hepeng Zhang ◽  
Yingwei Yu ◽  
...  

SiC particle reinforced aluminum alloy has a wide application in the aerospace industries. In this study, laser shock peening (LSP), an advanced surface modification technique, was employed for SiCp/2009Al composite to reveal its microstructure, microhardness and residual stress evolution. After peening, high densities of dislocations were induced in the aluminum substrate, and stacking faults were introduced into the SiC particle. The microhardness was increased from 155–170 HV to 170–185 HV, with an affected depth of more than 1.5 mm. Compressive residual stresses of more than 200 MPa were introduced. The three-point bending fatigue of the base material, laser peened and milled after laser peened specimens with artificial crack notch fabricated by a femtosecond laser was investigated. The average fatigue lives of laser peened and milled after laser peened specimens were increased by up to 10.60 and 2.66 times, compared with the base material. This combined fundamental and application-based research seeks to comprehensively explore the applicability of LSP on metal matrix composite.


Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 131-138
Author(s):  
杨晶 Yang Jing ◽  
周建忠 Zhou Jianzhong ◽  
黄舒 Huang Shu ◽  
左立党 Zuo Lidang ◽  
季杏露 Ji Xinglu ◽  
...  

2013 ◽  
Vol 50 (5) ◽  
pp. 051403 ◽  
Author(s):  
赖志林 Lai Zhilin ◽  
汪诚 Wang Cheng ◽  
李应红 Li Yinghong ◽  
周留成 Zhou Liucheng ◽  
何卫锋 He Weifeng ◽  
...  

2020 ◽  
Vol 1002 ◽  
pp. 21-32
Author(s):  
Ahmed R. Alhamaoy ◽  
Ghanim Sh. Sadiq ◽  
Furat I. Hussein ◽  
S.N. Ali

The optimal combination of aluminum quality, sufficient strength, high stress to weight ratio and clean finish make it a good choice in driveshafts fabrication. This study has been devoted to experimentally investigate the effect of applying laser shock peening (LSP) on the fatigue performance for 6061-T6 aluminum alloy rotary shafts. Q-switched pulsed Nd:YAG laser was used with operating parameters of 500 mJ and 600 mJ pulse energies, 12 ns pulse duration and 10 Hz pulse repetition rate. The LSP is applied at the waist of the prepared samples for the cyclic fatigue test. The results show that applying 500 mJ pulse energy yields a noticeable effect on enhancing the fatigue strength by increasing the required number of cycles to fracture the sample. In addition, the effect on increasing the pulse energy from 500 mJ to 600 mJ shows a significant effect in term of creating the endurance limit for the samples.


2017 ◽  
Vol 102 ◽  
pp. 121-134 ◽  
Author(s):  
Micheal Kattoura ◽  
Seetha Ramaiah Mannava ◽  
Dong Qian ◽  
Vijay K. Vasudevan

2018 ◽  
Vol 101 ◽  
pp. 531-544 ◽  
Author(s):  
V. Granados-Alejo ◽  
C. Rubio-González ◽  
C.A. Vázquez-Jiménez ◽  
J.A. Banderas ◽  
G. Gómez-Rosas

2014 ◽  
Vol 891-892 ◽  
pp. 974-979 ◽  
Author(s):  
Daniel Glaser ◽  
Claudia Polese ◽  
Rachana D. Bedekar ◽  
Jasper Plaisier ◽  
Sisa Pityana ◽  
...  

Laser Shock Peening (LSP) is a material enhancement process used to introduce compressive residual stresses in metallic components. This investigation explored the effects of different combinations of LSP parameters, such as irradiance (GW/cm2) and laser pulse density (spots/mm2), on 3.2 mm thick AA6056-T4 samples, for integral airframe applications. The most significant effects that are introduced by LSP without a protective coating include residual stress and surface roughness, since each laser pulse vaporizes the surface layer of the target. Each of these effects was quantified, whereby residual stress analysis was performed using X-ray diffraction with synchrotron radiation. A series of fully reversed bending fatigue tests was conducted, in order to evaluate fatigue performance enhancements with the aim of identifying LSP parameter influence. Improvement in fatigue life was demonstrated, and failure of samples at the boundary of the LSP treatment was attributed to a balancing tensile residual stress.


2005 ◽  
Vol 490-491 ◽  
pp. 328-333 ◽  
Author(s):  
I. Altenberger

In this paper, The effects of laser-shock peening and high temperature deep rolling on nearsurface microstructures, residual stress states and fatigue behavior of various metallic materials are investigated and discussed. Similar to warm peening (shot peening at elevated temperatures), high temperature deep rolling may induce several favourable effects, especially in ferritic steels, where dynamic strain aging by carbon atoms can be exploited as a major strengthening mechanism. But also in materials without ‚classical‘ strain aging high temperature deep rolling is effective in improving the fatigue behaviour by inducing favourable, e.g. precipitation-hardened, nearsurface microstructures. As a consequence, these modified near-surface microstructures directly alter the thermal and mechanical relaxation behaviour of residual stresses. Laser-shock peening is already used in the aircraft industry (as a mechanical surface treatment for fan-blades) and owes its benefial effects to deep layers of compressive residual stress and work hardening and a relatively smooth surface roughness. Characteristic examples of microstructures and residual stress profiles as generated by laser-shock peening are presented. Moreover, the impact on the fatigue behavior of steels and a titanium alloy is outlined and discussed.


Sign in / Sign up

Export Citation Format

Share Document