Evaluation of the Effect of LED-Lamp Spectral Content on the Development of Greenhouse Tomato

2016 ◽  
Vol 685 ◽  
pp. 482-486 ◽  
Author(s):  
Alexey N. Yakovlev ◽  
S.B. Turanov ◽  
I.N. Upadysheva ◽  
V.I. Korepanov

The article reports the results of the experiment studied the effect of radiation spectral content (considering its equal intensity in terms of photosynthetically active radiation) on the growth and development of Boets greenhouse tomato breed. We have shown that the effective development of model subjects requires the adaptation of radiation spectral content depending on the growth period and type of a plant, unlike the illumination level. The obtained results demonstrate the necessity of creating an adaptive irradiation unit.

Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 545-554 ◽  
Author(s):  
David Chikoye ◽  
Leslie A. Hunt ◽  
Clarence J. Swanton

The influence of weeds on crop yield is not only dependent on weed-related factors such as density and time of emergence, but also on environmental and management factors that affect both the weed and crop through time. This study was undertaken to develop the first physiologically based dry bean model that would account for the influence of weed competition. The specific objective was to develop a model that would account for the influence of weed competition on crop yield, and to use this model to test the hypothesis that crop yield losses resulted from competition for photosynthetically active radiation (PAR). To this end, a model that simulated the growth and development of dry bean was developed. The model performed daily calculations and simulated the phenology, leaf area expansion, dry matter production and distribution, and grain yield of dry bean based on weather and management information, but assumed adequate water and nutrients. The model was calibrated without weed competition at two locations and yr, and for these situations, adequately described the growth and development of the crop. Simulations were then run for five common ragweed densities and two times of emergence. Common ragweed leaf area was read into the model from input files and used to simulate weed shading. Shading of the dry bean canopy by common ragweed accounted for about 50 to 70% of the yield losses observed in field studies when weeds emerged with the crop. Weed shading did not account for the yield reduction measured from weeds that emerged at the second trifoliate stage of crop growth. The agreement between model predictions and field studies was consistent with the hypothesis that competition for PAR was a principal factor in weed-crop interaction. The ability to account for differences in weed densities, management, and environmental conditions suggested that modeling was a useful tool for evaluating the interaction among weeds and crops.


2021 ◽  
Vol 15 (4) ◽  
pp. 559-564
Author(s):  
Xiaomin Hou ◽  
Cong Wang ◽  
Shoukun Dong

Soybean is an important legume crop. Planting density of soybean directly affects the distribution of photosynthetically active radiation (PAR) in the canopy, which affects the physiological changes, such as photosynthesis of soybean, and leads to the change of yield. In this experiment, soybean variety Heinong 84 was adopted, and five planting densities were set as 200,000 plants/ha (D20), 250,000 plants/ha (D25), 300,000 plants/ha (D30), 400,000 plants/ha (D40) and 500,000 plants/ha (D50). The canopy PAR intensity was measured based on photosynthetically active radiation recorder, and the effects of different densities on soybean canopy PAR and yield were studied systematically. According to the results, with the extension of growth period, the PAR above and within the canopy of soybean decreased first and then increased, and the rules were consistent under different densities. During each growth period, PAR was above that of canopy > growth point > middle stem > cotyledon scar and decreased with the increase of density. The growth point changed significantly, followed by middle stem, but no significant change happened in cotyledon scar. The absorption photosynthetically active radiation (FPAR) showed a unimodal trend with the increase of density at V4 and R2 and had an upward trend at R4 and R6. The number of effective pods per plant and 100 seed weight of D20 are the highest, and the yield of D25 is the highest.


Nature Plants ◽  
2021 ◽  
Author(s):  
Shiji Hou ◽  
Thorsten Thiergart ◽  
Nathan Vannier ◽  
Fantin Mesny ◽  
Jörg Ziegler ◽  
...  

AbstractBidirectional root–shoot signalling is probably key in orchestrating stress responses and ensuring plant survival. Here, we show that Arabidopsis thaliana responses to microbial root commensals and light are interconnected along a microbiota–root–shoot axis. Microbiota and light manipulation experiments in a gnotobiotic plant system reveal that low photosynthetically active radiation perceived by leaves induces long-distance modulation of root bacterial communities but not fungal or oomycete communities. Reciprocally, microbial commensals alleviate plant growth deficiency under low photosynthetically active radiation. This growth rescue was associated with reduced microbiota-induced aboveground defence responses and altered resistance to foliar pathogens compared with the control light condition. Inspection of a set of A. thaliana mutants reveals that this microbiota- and light-dependent growth–defence trade-off is directly explained by belowground bacterial community composition and requires the host transcriptional regulator MYC2. Our work indicates that aboveground stress responses in plants can be modulated by signals from microbial root commensals.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 351
Author(s):  
Adolfo Rosati ◽  
Damiano Marchionni ◽  
Dario Mantovani ◽  
Luigi Ponti ◽  
Franco Famiani

We quantified the photosynthetically active radiation (PAR) interception in a high-density (HD) and a super high-density (SHD) or hedgerow olive system, by measuring the PAR transmitted under the canopy along transects at increasing distance from the tree rows. Transmitted PAR was measured every minute, then cumulated over the day and the season. The frequencies of the different PAR levels occurring during the day were calculated. SHD intercepted significantly but slightly less overall PAR than HD (0.57 ± 0.002 vs. 0.62 ± 0.03 of the PAR incident above the canopy) but had a much greater spatial variability of transmitted PAR (0.21 under the tree row, up to 0.59 in the alley center), compared to HD (range: 0.34–0.43). This corresponded to greater variability in the frequencies of daily PAR values, with the more shaded positions receiving greater frequencies of low PAR values. The much lower PAR level under the tree row in SHD, compared to any position in HD, implies greater self-shading in lower-canopy layers, despite similar overall interception. Therefore, knowing overall PAR interception does not allow an understanding of differences in PAR distribution on the ground and within the canopy and their possible effects on canopy radiation use efficiency (RUE) and performance, between different architectural systems.


2008 ◽  
Vol 47 (3) ◽  
pp. 853-868 ◽  
Author(s):  
Tao Zheng ◽  
Shunlin Liang ◽  
Kaicun Wang

Abstract Incident photosynthetically active radiation (PAR) is an important parameter for terrestrial ecosystem models. Because of its high temporal resolution, the Geostationary Operational Environmental Satellite (GOES) observations are very suited to catch the diurnal variation of PAR. In this paper, a new method is developed to derive PAR using GOES data. What makes this new method distinct from the existing method is that it does not need external knowledge of atmospheric conditions. The new method retrieves both atmospheric and surface conditions using only at-sensor radiance through interpolation of time series of observations. Validations against ground measurement are carried out at four “FLUXNET” sites. The values of RMSE of estimated and ground-measured instantaneous PAR at the four sites are 130.71, 131.44, 141.16, and 190.22 μmol m−2 s−1, respectively. At the four validation sites, the RMSE as the percentage of estimated mean PAR value are 9.52%, 13.01%, 13.92%, and 24.09%, respectively; the biases are −101.54, 16.56, 11.09, and 53.64 μmol m−2 s−1, respectively. The independence of external atmospheric information enables this method to be applicable to many situations in which external atmospheric information is not available. In addition, topographic impacts on surface PAR are examined at the 1-km resolution at which PAR is retrieved using the GOES visible band data.


Sign in / Sign up

Export Citation Format

Share Document