chrysanthemum morifolium ramat
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 73)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 31 (2) ◽  
pp. 161-171
Author(s):  
Jebunnesa Chowdhury ◽  
MI Hoque ◽  
RH Sarker

An efficient and rapid in vitro regeneration protocol was developed for chrysanthemum (Chrysanthemum morifolium Ramat) using two local varieties of Bangladesh namely, BARI Chrysanthemum-2 (BARI Chry-2) and local yellow (Y). MS medium supplemented with nine different concentrations and combinations of BAP and IAA was employed to optimize regeneration protocol using young in vitro derived leaf explants. Direct organogenesis was observed from the leaf explants on MS medium supplemented with 0.5 mg/l BAP and 2.0 mg/l IAA (T6) for both the varieties. This treatment (T6) induced shoot buds directly on the adaxial surface of the leaf providing the highest regeneration percentage (90% for BARI Chry-2 and 94.73% for Y), the highest number of shoot/explant (7.6 for BARI Chry-2 and 8.6 for Y) and maximum length of the shoot after six weeks (3 cm for BARI Chry-2 and 2.9 cm for Y) of culture. Explants with initially regenerated shoots were subculture on hormone free MS medium for shoot elongation after 4 weeks of their inoculation. During elongation of shoots, 90-95% of the regenerated shoots produced roots spontaneously in hormone free MS medium within 7-8 weeks of their inoculation. Rooted plantlets were transplanted to the field following hardening where 100% plantlets were survived and produced flower without any variation. Plant Tissue Cult. & Biotech. 31(2): 161-171, 2021 (December)


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 14
Author(s):  
Gang Shao ◽  
Rui Liu ◽  
Ziyan Qian ◽  
Hua Zhang ◽  
Qian Hu ◽  
...  

Chlorophyll is vital for photosynthesis to produce sugars and other useful biochemical products in green plants. However, the molecular effects of chlorophyll deficiency in Chrysanthemum are largely unknown. In this study, we identified a bud sport mutant chrysanthemum belonging to the variety ‘Nannong Binyun’, which has yellow branches. Plant physiological studies have shown that the yellow color is revealed due to chlorophyll loss. RNA extracts of yellow and green tissues were analyzed using high-throughput RNA-sequencing, and a total of 11,649 tissue enriched unigenes that respond to chlorophyll deficiency were identified, including 4803 unigenes upregulated in yellow tissues and 6846 unigenes in green tissues. GO analysis revealed that these tissue-enriched genes may involve in the physiological processes of chlorophyll accumulation and photosynthesis. In addition, many DEGs from the families of AP2-EREBP, bHLH, MYB, and FAR1 that are associated with plant development and stress response were detected. Our study found that most of the genes from the GRAS family were downregulated in yellow leaves, indicating their putative roles in stem cell maintenance and possible contribution to leaf size determination.


Genome ◽  
2021 ◽  
pp. 1-7
Author(s):  
Min Fan ◽  
Yike Gao ◽  
Zhiping Wu ◽  
Saba Haider ◽  
Qixiang Zhang

Chrysanthemums (Chrysanthemum morifolium Ramat.) are ornamental flowers, which are famous worldwide. The mode of inheritance has great implications for the genetic analysis of polyploid species. However, genetic analysis of chrysanthemum has been hampered because of its controversial inheritance mode (disomic or hexasomic). To classify the inheritance mode of chrysanthemums, an analysis of three approaches was carried out in an F1 progeny of 192 offspring using 223 expressed sequence tag-simple sequence repeat (EST-SSR) markers. The analysis included segregation analysis, the ratio of simplex marker alleles linked in coupling to repulsion, as well as the transmission and segregation patterns of EST-SSR marker alleles. After segregation analysis, 204 marker alleles fit hexasomic inheritance and 150 marker alleles fit disomic inheritance, showing that marker alleles were inherited predominantly in a hexasomic manner. Furthermore, the results of the analysis of allele configuration and segregation behavior of five EST-SSR markers also suggested random pairing of chromosomes. Additionally, the ratio of simplex marker alleles linked in coupling to repulsion was 1:0, further supporting hexasomic inheritance. Therefore, it could be inferred that chrysanthemum is a complete or near-complete hexasome.


2021 ◽  
Vol 22 (21) ◽  
pp. 12019
Author(s):  
Jingli Yang ◽  
Byoung Ryong Jeong

Light is one of the most important factors that influence plant growth and development. This study was conducted to examine how lighting direction affects plant morphophysiology by investigating plant growth parameters, leaf anatomy, epidermal cell elongation, stomatal properties, chloroplast arrangement, and physiological changes. In closed-type plant factory units, the rooted cuttings of two chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars, ‘Gaya Glory’ and ‘Pearl Egg’, were subjected to a 10 h photoperiod with a 300 μmol∙m−2∙s−1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) from three directions relative to the plant including the top, side, and bottom. Compared to the top or bottom lighting, the side lighting greatly enhanced the plant growth, improved the leaf internal structure and chloroplast arrangement, induced small stomata with a higher density, and promoted stomatal opening, which is associated with an increased stomatal conductance and photosynthetic efficiency. It is worth noting that the side lighting significantly enhanced the induction of branching and flowering for both cultivars., The plants grown with side lighting consistently exhibited the greatest physiological performance. We conclude that the lighting direction had a profound effect on the morphophysiological characteristics of chrysanthemum, and that side lighting dramatically promoted their growth and development, especially in their branching and flowering.


Sign in / Sign up

Export Citation Format

Share Document