Thermoelectric Properties of Silicon Germanium Alloy Nanocomposite Fabricated by Mechanical Alloying and Spark Plasma Sintering

2016 ◽  
Vol 703 ◽  
pp. 70-75 ◽  
Author(s):  
Zhen Ye Zhu ◽  
Shi Lei Guo

High dense p-type Si95Ge5 doped with nanoSi70Ge30B5particles thermoelectric materials were firstly fabricated by mechanical alloying (MA) and spark plasma sintering (SPS) method. The effects of different nanoSi70Ge30B5 doping content on the thermoelectric and phase properties were studied. A dimensionless thermoelectric figure-of-merit (ZT) of 0.47 at 710K in p-type nanocomposite bulk silicon germanium (SiGe) alloys is achieved. The enhancement of ZT is due to a large reduction of thermal conductivity caused by the increased grain boundaries of the numerous nanograins that effectively scatter long wavelength phonons.

2020 ◽  
Vol 21 (4) ◽  
pp. 628-634
Author(s):  
O. Kostyuk ◽  
B. Dzundza ◽  
M. Maksymuk ◽  
V. Bublik ◽  
L. Chernyak ◽  
...  

Bismuth antimony telluride is the most commonly used commercial thermoelectric material for power generation and refrigeration over the temperature range of 200–400 K. Improving the performance of these materials is a complected balance of optimizing thermoelectric properties. Decreasing the grain size of Bi0.5Sb1.5Te3 significantly reduces the thermal conductivity due to the scattering phonons on the grain boundaries. In this work, it is shown the advances of spark plasma sintering (SPS) for the preparation of nanocrystalline p-type thermoelectrics based on Bi0.5Sb1.5Te3 at different temperatures (240, 350, 400oC). The complex study of structural and thermoelectric properties of Bi0.5Sb1.5Te3 were presented. The high dimensionless thermoelectric figure of merit ZT ~ 1 or some more over 300–400 K temperature range for nanocrystalline p-type Bi0.5Sb1.5Te3 was obtained.


2015 ◽  
Vol 3 (20) ◽  
pp. 10777-10786 ◽  
Author(s):  
A. Bhardwaj ◽  
N. S. Chauhan ◽  
D. K. Misra

Several nanostructuring methods have been demonstrated to produce a variety of nanostructured materials, and these methods are well recognized as effective paradigms for improving the performance of thermoelectric materials.


Sign in / Sign up

Export Citation Format

Share Document