Multi-Scale Contact Modeling of Coated Steels for Sheet Metal Forming Applications

2018 ◽  
Vol 767 ◽  
pp. 223-231 ◽  
Author(s):  
Meghshyam Shisode ◽  
Javad Hazrati ◽  
Tanmaya Mishra ◽  
Matthijn de Rooij ◽  
Ton van den Boogaard

Friction in sheet metal forming is a local phenomenon which depends on continuously evolving contact conditions during the forming process. This is mainly influenced by local contact pressure, surface textures of the sheet metal as well as the forming tool surface profile and material behavior. The first step for an accurate prediction of friction is to reliably estimate real area of contact at various normal loads. In this study, a multi-scale contact model for the normal load is presented to predict asperity deformation in coated steels and thus to estimate the real area of contact. Surface profiles of the zinc layer and steel substrate are modelled explicitly obtained from confocal measurements. Different mechanical properties are assigned to the zinc coating and the steel substrate. The model was calibrated and validated relative to lab-scale normal load tests using different samples of zinc coated steel with distinct surface textures. The results show that the model is able to predict the real area of contact in zinc-coated steels for various contact pressures and different surface textures. Current multi-scale model can be used to determine the local friction coefficient in sheet metal forming processes more accurately.

Friction ◽  
2020 ◽  
Author(s):  
Meghshyam Shisode ◽  
Javad Hazrati ◽  
Tanmaya Mishra ◽  
Matthijn De Rooij ◽  
Ton Van Den Boogaard

Abstract Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear. In sheet metal forming processes, sheet surface asperities are deformed due to contact forces between the tools and the workpiece. In addition, as the sheet metal is strained while retaining the normal load, the asperity deformation increases significantly. Deformation of the asperities determines the real area of contact which influences the friction and wear at the tool-sheet metal contact. The real area of contact between two contacting rough surfaces depends on type of loading, material behavior, and topography of the contacting surfaces. In this study, an experimental setup is developed to investigate the effect of a combined normal load and sub-surface strain on real area of contact. Uncoated and zinc coated steel sheets (GI) with different coating thicknesses, surface topographies, and substrate materials are used in the experimental study. Finite element (FE) analyses are performed on measured surface profiles to further analyze the behavior observed in the experiments and to understand the effect of surface topography, and coating thickness on the evolution of the real area of contact. Finally, an analytical model is presented to determine the real area contact under combined normal load and sub-surface strain. The results show that accounting for combined normal load and sub-surface straining effects is necessary for accurate predictions of the real area of contact.


2015 ◽  
Vol 81 ◽  
pp. 112-128 ◽  
Author(s):  
J. Hol ◽  
V.T. Meinders ◽  
M.B. de Rooij ◽  
A.H. van den Boogaard

2016 ◽  
Vol 725 ◽  
pp. 15-32
Author(s):  
Pavel Hora ◽  
Bekim Berisha ◽  
Maysam Gorji ◽  
Holger Hippke

The industrial necking prediction in sheet metal forming is still based on the Forming Limit Diagram (FLD) as initially proposed by Keeler. The FLD is commonly specified by the Nakajima tests and evaluated with the so called cross section method. Although widely used, the FLC concept has numerous serious limitations. In the paper the influences of bending on the FLC as well as postponed crack limits will be discussed. Both criteria will be combined to an extended FLC concept (X-FLC). The new concept demonstrates that the Nakajima tests are not only appropriate for the evaluation of the necking instability, but also for the detection of the real crack strains. For the evaluation of the crack strains, a new local thinning method is proposed and tested for special 6xxx Al-alloys.


2011 ◽  
Author(s):  
J. Hol ◽  
M. V. Cid Alfaro ◽  
T. Meinders ◽  
J. Huétink

Sign in / Sign up

Export Citation Format

Share Document