Multi-scale friction modeling for sheet metal forming: The mixed lubrication regime

2015 ◽  
Vol 85 ◽  
pp. 10-25 ◽  
Author(s):  
J. Hol ◽  
V.T. Meinders ◽  
H.J.M. Geijselaers ◽  
A.H. van den Boogaard
2020 ◽  
Vol 47 ◽  
pp. 586-590 ◽  
Author(s):  
Meghshyam Prabhakar Shisode ◽  
Javad Hazrati ◽  
Tanmaya Mishra ◽  
Matthijn de Rooij ◽  
Ton van den Boogaard

2018 ◽  
Vol 767 ◽  
pp. 223-231 ◽  
Author(s):  
Meghshyam Shisode ◽  
Javad Hazrati ◽  
Tanmaya Mishra ◽  
Matthijn de Rooij ◽  
Ton van den Boogaard

Friction in sheet metal forming is a local phenomenon which depends on continuously evolving contact conditions during the forming process. This is mainly influenced by local contact pressure, surface textures of the sheet metal as well as the forming tool surface profile and material behavior. The first step for an accurate prediction of friction is to reliably estimate real area of contact at various normal loads. In this study, a multi-scale contact model for the normal load is presented to predict asperity deformation in coated steels and thus to estimate the real area of contact. Surface profiles of the zinc layer and steel substrate are modelled explicitly obtained from confocal measurements. Different mechanical properties are assigned to the zinc coating and the steel substrate. The model was calibrated and validated relative to lab-scale normal load tests using different samples of zinc coated steel with distinct surface textures. The results show that the model is able to predict the real area of contact in zinc-coated steels for various contact pressures and different surface textures. Current multi-scale model can be used to determine the local friction coefficient in sheet metal forming processes more accurately.


Author(s):  
Meghshyam Shisode ◽  
Javad Hazrati ◽  
Tanmaya Mishra ◽  
Matthijn de Rooij ◽  
Ton van den Boogaard

2010 ◽  
Vol 438 ◽  
pp. 171-178 ◽  
Author(s):  
Manuel Ludwig ◽  
Cecile Müller ◽  
Peter Groche

Tribology plays an important role in sheet metal forming processes relating to near net shape production processes and achievable surface qualities. Nearly every process is realized by using characteristic lubricants affecting the tribological system to achieve the desired results. Deterministic structures on sheet surfaces can result in less friction and higher drawing ratios. This is caused by hydrostatic pressures build up in closed lubricant areas and hydrodynamic pressures due to the lubricant motion especially in thin fluid films [1, 2, 3]. Friction mechanisms in the mixed lubrication regime are not fully understood till today. The numerical simulation of flows in lubricant pockets and their influence on surface evolution are promising ways to gain more knowledge of the lubricant behavior in tribological systems. Therefore, this paper shows results of combined numerical and experimental approaches. The described simulations of closed lubricant pockets on surfaces identify influencing parameters. Strip drawing experiments are done to verify the simulations. The influence and the importance of local pressures due to viscous effects in the lubricant are considered as well as the necessity to use fluid-structure-interactions to simulate the behavior of lubricants in the tribological system.


Sign in / Sign up

Export Citation Format

Share Document