Investigating the Impacts of Heterogeneous Infills on Structural Strength of 3D Printed Parts

2019 ◽  
Vol 799 ◽  
pp. 276-281
Author(s):  
Ramisha Sajjad ◽  
Sajid Ullah Butt ◽  
Khalid Mahmood ◽  
Hasan Aftab Saeed

Additive Manufacturing is a manufacturing process based on layers for making three dimensional scaled physical parts directly from 3D CAD data. Fused Deposition Modeling (FDM) is widely used technology that provides functional prototypes in various thermoplastics. In additive manufacturing, filling patterns are of two types; External and Internal filling patterns. Multiple patterns are developed for both filling categories. In this work, a heterogeneous infill strategy is used by choosing developed patterns in order to improve strength to weight ratio, material usage and build time for parts. A rectilinear pattern combination with triangular and rectangular pattern has been chosen for 3D printing. The tensile testing is performed on the printed specimens to calculate the strength to weight ratio. By comparing the obtained results, a strategy based on maximum strength to weight ratio, minimum material usage and reduced build time is recommended for FDM technology.

2017 ◽  
Vol 887 ◽  
pp. 128-132 ◽  
Author(s):  
Shaheryar Atta Khan ◽  
Bilal Ahmed Siddiqui ◽  
Muhammad Fahad ◽  
Maqsood Ahmed Khan

Additive manufacturing has stepped down from the world of Sci-Fi into reality. Since its conception in the 1980s the technology has come a long way. May variants of the technology are now available to the consumer. With the advent of custom built (open source) Fused Deposition Modeling based printing technology Fused Filament Fabrication (FFF), FDM/FFF has become the most used Additive Manufacturing technology. The effects of the different infill patterns of FDM/FFF on the mechanical properties of a specimen made from ABS are studied in this paper. It is shown that due to changes in internal structures, the tensile strength of the specimen changes. The study also investigate the effect of infill pattern on the build time of the specimen. Extensive testing yielded the optimal infill pattern for FDM/FFF. An open source Arduino based RepRap printer was used for the preparation of specimen and showed promising results for rapid prototyping of custom built parts to bear high loads. The study can help with the increase in the use of additive manufacturing for the manufacturing of mechanically functioning parts such as prosthetics


Author(s):  
Pravin R. Kubade ◽  
Hrushikesh B. Kulkarni ◽  
Vinayak C. Gavali

Additive Manufacturing or three-dimensional printing refers to a process of building lighter, stronger three-dimensional parts, manufactured layer by layer. Additive manufacturing uses a computer and CAD software which passes the program to the printer to build the desired shape. Metals, thermoplastic polymers, and ceramics are the preferred materials used for additive manufacturing. Fused deposition modeling is one additive manufacturing technique involving the use of thermoplastic polymer for creating desired shape. Carbon fibers can be added into polymer to strengthen the composite without adding additional weight. Present work deals with the manufacturing of Carbon fiber-reinforced Polylactic Acid composites prepared using fused deposition modeling. Mechanical and thermo-mechanical properties of composites are studied as per ASTM standards and using sophisticated instruments. It is observed that there is enhancement in thermo-mechanical properties of composites due to addition reinforcement which is discussed in detail.


2019 ◽  
Vol 890 ◽  
pp. 113-145
Author(s):  
Imran Khan ◽  
Christina S. Kamma-Lorger ◽  
Saeed D. Mohan ◽  
Artur Mateus ◽  
Geoffrey R. Mitchell

Additive manufacturing (AM) is a well-known technology for making real three dimensional objects, based on metal, ceramic and plastic material used for various applications. The aim of this review is to explore and offer an insight in to the state of the art polymer based nanocomposites in to additive manufacturing applications. In context to this, the developing efforts and trends in nanocomposites development particularly for additive manufacturing processes were studied and summed up. The scope and limitations of nanocomposites into Stereolithography, selective laser sintering and fused deposition modeling was explored and highlighted. The review highlights widely accepted nanoparticles for range of applications including mechanical, electrical, flame retardance and crossing over into more biological with the use of polymer matrices. Acquisition of functional parts with limitations in regard to printing is highlighted. Overall, the review highlights successes, limitations and opportunities that the union of AM and polymer based nanocomposites can bring to science and technology.


Author(s):  
Sungshik Yim ◽  
David Rosen

Due to the varieties of available Additive Manufacturing (AM) technologies, it is challenging to select appropriate processes to cost effectively build a part, especially when a user does not have in-depth knowledge about AM. In this paper, we introduce approximate models of build time and cost for AM processes that can be used for early stage process selection. Therefore, a user can identify and compare candidate manufacturing processes based on build time and cost estimates that are computed from approximate geometric information about the part, specifically the part’s bounding box and its estimated volume. The build time model is based on a generalized parameterization of AM processes that applies to laser-based scanning (Stereolithography, powder bed fusion), filament extrusion (fused-deposition modeling), ink-jet printing, and mask-projection processes. Build time estimates were tested by comparing them to the measured build time of parts in fabricated using Stereolithography, ink-jet printing, and fused deposition modeling processes.


Author(s):  
João Fiore Parreira Lovo ◽  
Carlos Alberto Fortulan ◽  
Maíra Martins da Silva

Whether for producing prototypes or functional parts by additive manufacturing, the fused deposition modeling is the most commonly used technique. Nevertheless, not only the hobbyist but also the industrial three-dimensional printers produce parts that suffer from anisotropy in their mechanical properties imposing important limitations on the strength of the manufactured piece. The aim of this work is to propose a strategy for determining the optimal build surface orientation of three-dimensional truss-like structures manufactured using fused deposition modeling. This can be achieved by minimizing the norm of the dot products of the normal direction of the deposition plane (build surface plane) and the directions of the tensile forces. Since three-dimensional trusses are subjected to tensile forces in different directions, a multi-objective cost function was proposed. Moreover, these structures might present rotational symmetry, which should be considered as design constraints. In this work, two three-dimensional truss-like structures were investigated. The nature of the optimization is case dependent and solvers were selected accordingly. Experimental campaigns were carried out for evaluating the specimens manufactured using fused deposition modeling. It could be concluded that higher yield tensile strength could be achieved by adopting the optimal deposition plane. This result demonstrates the applicability of optimization techniques for improving additive manufacturing results.


Author(s):  
Claudio Comotti ◽  
Daniele Regazzoni ◽  
Caterina Rizzi ◽  
Andrea Vitali

The improvement and the massive diffusion of additive manufacturing (AM) techniques have fostered the research of design methods to exploit at best the feature introduced by these solutions. The whole design paradigm needs to be changed taking into account new manufacturing capabilities. AM is not only an innovative method of fabrication, but it requires a new way to design products. Traditional practices of mechanical design are changing to exploit all potential of AM, new parameters and geometries could be realized avoiding technologies constrains of molding or machine tooling. The concept of “manufacturing for design” increasingly acquires greater importance and this means we have the chance to focus almost entirely on product functionality. The possibility to confer inhomogeneous properties to objects provides an important design key. We will study behavior and structure according to desired functions for each object identifying three main aspects to vary: infill type, external topology and shape, and material composition. In this research work, we focus on fused deposition modeling (FDM) technology of three dimensional (3D) printing that easily allows to explore all previous conditions. We present a new way to conceive design process in order to confer variable properties to AM objects and some guidelines to control properties of deformation and elasticity using classic infills. The ultimate aim is to apply new design rules provided by AM in the prosthetic field of lower limb amputees. The socket of the prosthesis represents a deformable interface between the residual limb and the artificial leg that must be optimized according to geometry and loads distribution of patient. An application for a transfemoral patient will be discussed.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


Sign in / Sign up

Export Citation Format

Share Document