Preparation and Electrochemical Properties of Si@C/Graphite Composite as Anode for Lithium-Ion Batteries

2019 ◽  
Vol 807 ◽  
pp. 74-81
Author(s):  
Ying Wang ◽  
Wei Ruan ◽  
Ren Heng Tang ◽  
Fang Ming Xiao ◽  
Tai Sun ◽  
...  

In this study, Si@C/Graphite composite anodes were synthesized through spray drying and pyrolysis using silica, artificial graphite, and two kinds of organics (phenolic resin or pitch). The Si@PR-C/Graphite exhibits enhanced electrochemical performance for lithium-ion batteries. The first charge-discharge specific capacity is 512.8mAh/g and 621.8mAh/g, respectively, the initial coulombic efficiency is 82.5% at 100mA/g, and its capacity retention rate reached as high as 85.4% with the capacity fade rate of less than 0.18% per cycle after 85 cycles. The Si@PI-C/Graphite also presents excellent discharge specific capacity of 702.8mAh/g with the capacity retention rate of 76.9% after 30 cycles. Mechanisms for high electrochemical performances of the Si@C/Graphite composite anode are discussed. It found that the enhanced electrochemical performance due to the formation of core/shell microstructure. These encouraging experimental results suggest that proper organic carbon source has great potential for improvement of electrochemical properties of pure silicon as anode. Key words:lithium-ion batteries; anode; Si@C/Graphite composite; electrochemical performance

Nanoscale ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 3159-3165 ◽  
Author(s):  
Yucheng Dong ◽  
Shiliu Yang ◽  
Zhenyu Zhang ◽  
Jong-Min Lee ◽  
Juan Antonio Zapien

Antimony sulfide can be used as a promising anode material for lithium ion batteries due to its high theoretical specific capacity derived from sequential conversion and alloying lithium insertion reactions.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4751
Author(s):  
Lian-Bang Wang ◽  
He-Shan Hu ◽  
Wei Lin ◽  
Qing-Hong Xu ◽  
Jia-Dong Gong ◽  
...  

Lithium-rich manganese oxide is a promising candidate for the next-generation cathode material of lithium-ion batteries because of its low cost and high specific capacity. Herein, a series of xLi2MnO3·(1 − x)LiMnO2 nanocomposites were designed via an ingenious one-step dynamic hydrothermal route. A high concentration of alkaline solution, intense hydrothermal conditions, and stirring were used to obtain nanoparticles with a large surface area and uniform dispersity. The experimental results demonstrate that 0.072Li2MnO3·0.928LiMnO2 nanoparticles exhibit a desirable electrochemical performance and deliver a high capacity of 196.4 mAh g−1 at 0.1 C. This capacity was maintained at 190.5 mAh g−1 with a retention rate of 97.0% by the 50th cycle, which demonstrates the excellent cycling stability. Furthermore, XRD characterization of the cycled electrode indicates that the Li2MnO3 phase of the composite is inert, even under a high potential (4.8 V), which is in contrast with most previous reports of lithium-rich materials. The inertness of Li2MnO3 is attributed to its high crystallinity and few structural defects, which make it difficult to activate. Hence, the final products demonstrate a favorable electrochemical performance with appropriate proportions of two phases in the composite, as high contents of inert Li2MnO3 lower the capacity, while a sufficient structural stability cannot be achieved with low contents. The findings indicate that controlling the composition through a dynamic hydrothermal route is an effective strategy for developing a Mn-based cathode material for lithium-ion batteries.


2021 ◽  
Author(s):  
Lingjiang Kou ◽  
Jiajia Song

Abstract The morphology and nanosize of cathode materials play a crucial role in the improved electrochemical properties of the electrode material for lithium ion batteries. Herein, we report the synthesis of a novel NH4V3O8 rectangular nanotube via a facile one-pot solvothermal protocol with the use of the mixing solvent containing glycerol, ethanol, and ethylene glycol. The morphology and nanosize evolution of the as-prepared NH4V3O8 materials from the addition of different solvents has been systematically investigated. The electrochemical properties of these materials are closely related to their structure. Compared with other synthesized counterparts with three different morphologies (nanoparticle, ultra-small nanoparticle, and hierarchical microsheet), the resultant NH4V3O8 rectangular nanotube exhibited high reversible capacity with a maximum discharge capacity of 253.8 mAh g− 1at 15 mA g− 1, and the capacity retention rate is 75 % after 50 cycles. This work reveals the relationship between the morphology and electrochemical performance of NH4V3O8 and provides a feasible method for the synthesis of high-performance electrode materials.


Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 436 ◽  
Author(s):  
Song ◽  
Huang ◽  
Zhong

:Herein, the lithium-rich material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 is successfully prepared by a sucrose-assisted gel method. With the assistance of sucrose, Li[Li0.2Mn0.56Ni0.16Co0.08]O2 precursors can be uniformly dispersed into sticky sucrose gel without aggregation. XRD shows that the lithium-rich material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 has a well-organized layered structure. The electrochemical performance is influenced by calcination temperature. The results show that the sample Li[Li0.2Mn0.56Ni0.16Co0.08]O2 calcined at 900 °C possess significant performance. This sample delivers higher discharge specific capacity of 252 mAh g−1; rate capability with a capacity retention of 86% when tested at 5C; and excellent cyclic stability with a capacity retention rate of 81% after 100 cycles under 1C test. The sucrose-assisted method shows great potential in fabricating layered lithium-rich materials


2013 ◽  
Vol 724-725 ◽  
pp. 1071-1074
Author(s):  
Dao Wu Shuang Shi ◽  
Zheng Zhang ◽  
Hong Yuan Zhao ◽  
Xin Quan Liu

Li3V2(PO4)3/C composite cathode material was synthesized by solid state method using LiOH•H2O, NH4H2PO4, NH4VO3 as raw materials, sucrose as carbon source, and two kinds of precursor’s treatment such as pre-sintering and hydrothermal methods. The effect of different precursor’s treatment methods on the electrochemical properties of the material was investigated. The results showed that the samples treated with hydrothermal process has smaller particle size and the initial discharge specific capacity of 119mAh/g, the capacity retention rate is 85% after 20 cycles. But the samples treated with pre-sintering (without hydrothermal process) has larger particle size and the initial discharge specific capacity 103.2mAh/g, the capacity retention rate is only 72% after 20 cycles. These results can be attributed to that the hydrothermally treated sample has smaller particle sizes, higher conductivity and shorter distances of lithium ion diffusion and electron mobility, thus the electrochemical performances are improved.


2014 ◽  
Vol 2 (19) ◽  
pp. 6966-6975 ◽  
Author(s):  
Ly Tuan Anh ◽  
Alok Kumar Rai ◽  
Trang Vu Thi ◽  
Jihyeon Gim ◽  
Sungjin Kim ◽  
...  

The K+ ion doping significantly improved the electronic conductivity, diffusion efficiency and kinetic properties of Co3O4 during the lithiation and delithiation process, which eventually improves the electrochemical properties.


2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


Sign in / Sign up

Export Citation Format

Share Document