Evaluation of Fatigue Behavior of Silicon Carbide Particles Reinforced with Magnesium Alloy Metal Matrix Composites

2020 ◽  
Vol 830 ◽  
pp. 113-118
Author(s):  
Song Jeng Huang ◽  
Murugan Subramani ◽  
Addisu Ali ◽  
Dawit Alemayehu ◽  
Jong Ning Aoh ◽  
...  

To evaluate the fatigue behaviors of AZ61 magnesium alloy with different weight percentages (0, 1 and 2) of silicon carbide particles (SiCp) were fabricated through gravity casting method. In addition, stress-controlled low-cycle fatigue test of SiCp reinforced magnesium alloys AZ61 were performed in ambient atmosphere at room temperature using ASTM 606 standard specimens. Fatigue measurement results proved, that the fatigue life of SiCp reinforced metal matrix composites (MMCs) decreased with increasing SiCp content. However, the results of the cyclic ductility decreased owing to the presence of significant amount of SiCp, which induces the brittleness of fatigue properties. This is probably occurring because of increasing the SiCp content in the matrix causes highly localized plastic strain. In addition, a high concentration of stress results around the reinforcements particles regions initiate the crack leading to rapid failure of MMCs. Therefore, the SiCp did not act as a stress reliever and it behaves in a brittle manner for the crack propagation through the particles.

2014 ◽  
Vol 40 (10) ◽  
pp. 16653-16664 ◽  
Author(s):  
Peng He ◽  
Shangyu Huang ◽  
Huachang Wang ◽  
Zhichao Huang ◽  
Jianhua Hu ◽  
...  

2001 ◽  
Vol 16 (9) ◽  
pp. 2613-2618 ◽  
Author(s):  
C. W. Souvignier ◽  
T. B. Sercombe ◽  
S. H. Huo ◽  
P. Calvert ◽  
G. B. Schaffer

A series of metal-matrix composites were formed by extrusion freeform fabrication of a sinterable aluminum alloy in combination with silicon carbide particles and whiskers, carbon fibers, alumina particles, and hollow flyash cenospheres. Silicon carbide particles were most successful in that the composites retained high density with up to 20 vol% of reinforcement and the strength approximately doubles over the strength of the metal matrix alone. Comparison with simple models suggests that this unexpectedly high degree of reinforcement can be attributed to the concentration of small silicon carbide particles around the larger metal powder. This fabrication method also allows composites to be formed with hollow spheres that cannot be formed by other powder or melt methods.


2021 ◽  
Author(s):  
Qian Zhang

An analytical model for predicitng the crack inititation life of low cycle fatique (LCF) of discontinuously reinforced metal matrix composites (DR-MMCs) has been proposed. The effects of the volume fraction Vf cyclic strain hardening exponent n' and cyclic strength coefficient K' on the LCF crack initiation life of DR-MMCs were analyzed. While both the lower level of the plastic strain amplitude and the lower Vf were found to increase the LCF crack initiation resistance, the effects of n' and K' were more complicated. By considering the enhanced dislocation density in the matrix and the load bearing effect of particles, a quantitative relationship between the LCF life of DR-MMCs and particle size was also derived. This model showed that a decreasing particle size results in a longer LCF life. The theoretical predictions based on the proposed models were found to be in good agreement with the experimental data reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document