Influence of Layer Thickness and Continuous Carbon Fiber on the Mechanical Property of 3D Printed Polyamide

2020 ◽  
Vol 861 ◽  
pp. 165-169
Author(s):  
Tian Lan ◽  
Li Chao Dong ◽  
Zhong Yuan Lu ◽  
Shi Feng Guo ◽  
Hao Zhang ◽  
...  

3D printed carbon fiber reinforced composites (CFRP) have shown great potential in lightweight application. Here, we report a prepreg carbon fiber reinforced polyamide composite by fused filament fabrication 3D printing process. The influence of layer thickness and carbon fiber layers on mechanical properties of 3D printed parts was well studied. With the incorporation of prepreg carbon fibers, the value of tension and flexural strengths of 3D printed CFRP parts could achieve 2.7 and 13.6 times compared to neat polyamide, respectively. Result illustrates that with the prepreg process the carbon fiber have good interface bonding strength with neat polyimide. This work could also be used for more 3D printing composite systems.

2021 ◽  
pp. 089270572110214
Author(s):  
Weiller M Lamin ◽  
Flávio LS Bussamra ◽  
Rafael TL Ferreira ◽  
Rita CM Sales ◽  
José E Baldo

This work presents the experimental determination of fracture mechanics parameters of composite specimens manufactured by fused filament fabrication (FFF) with continuous carbon fiber reinforced thermoplastic filaments, based on Linear Elastic Fracture Mechanics (LEFM). The critical mode I translaminar fracture toughness (KIc) and the critical energy release rate (GIc) are found for unidirectional and cross-ply laminates. The specimens were submitted to quasi-static tensile testing. Digital Image Correlation (DIC) is used to find the stress field. The stress fields around the crack tip are compared to linear elastic finite element simulations. The results demonstrate the magnitude of fracture toughness is in the same range as for polymers and some metals, depending on lay-up configuration. Besides, fractographic analyses show some typical features as river lines, fiber impression, fiber pulls-out and porosity aspects.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 301
Author(s):  
Jiale Hu ◽  
Suhail Mubarak ◽  
Kunrong Li ◽  
Xu Huang ◽  
Weidong Huang ◽  
...  

Three-dimensional (3D) printing of continuous fiber-reinforced composites has been developed in recent decades as an alternative means to handle complex structures with excellent design flexibility and without mold forming. Although 3D printing has been increasingly used in the manufacturing industry, there is still room for the development of theories about how the process parameters affect microstructural properties to meet the mechanical requirements of the printed parts. In this paper, we investigated continuous carbon fiber-reinforced polyphenylene sulfide (CCF/PPS) as feedstock for fused deposition modeling (FDM) simulated by thermocompression. This study revealed that the samples manufactured using a layer-by-layer process have a high tensile strength up to 2041.29 MPa, which is improved by 68.8% compared with those prepared by the once-stacked method. Moreover, the mechanical–microstructure characterization relationships indicated that the compactness of the laminates is higher when the stacked CCF/PPS are separated, which can be explained based on both the void formation and the nanoindentation results. These reinforcements confirm the potential of remodeling the layer-up methods for the development of high-performance carbon fiber-reinforced thermoplastics. This study is of great significance to the improvement of the FDM process and opens broad prospects for the aerospace industry and continuous fiber-reinforced polymer matrix materials.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4305
Author(s):  
Amal Nassar ◽  
Mona Younis ◽  
Mohamed Elzareef ◽  
Eman Nassar

This work investigated the effects of heat treatment on the tensile behavior of 3D-printed high modules carbon fiber-reinforced composites. The manufacturing of samples with different material combinations using polylactic acid (PLA) reinforced with 9% carbon fiber (PLACF), acrylonitrile butadiene styrene (ABS) reinforced with 9% carbon fiber (ABSCF) were made. This paper addresses the tensile behavior of different structured arrangements at different% of densities between two kinds of filaments. The comparison of the tensile behavior between heat treated and untreated samples. The results showed that heat treatment improves the tensile properties of samples by enhancing the bonding of filament layers and by reducing the porosity content. At all structure specifications, the rectilinear pattern gives higher strength of up to 33% compared with the Archimedean chords pattern. Moreover, there is a limited improvement in the tensile strength and modulus of elasticity values for the samples treated at low heat-treatment temperature. The suggested methodology to evaluate the tensile behavior of the pairs of materials selected is innovative and could be used to examine sandwich designs as an alternative to producing multi-material components using inexpensive materials.


Sign in / Sign up

Export Citation Format

Share Document