Investigation of Different Joining by Forming Strategies when Connecting Different Metals without Auxiliary Elements

2021 ◽  
Vol 883 ◽  
pp. 19-26
Author(s):  
David Römisch ◽  
Martin Kraus ◽  
Marion Merklein

Lightweight constructions become more and more important, especially in the mobility sector. In this industry, the increasingly strict regulations regarding the emissions of carbon dioxide can be achieved to a certain extent by reducing the vehicle weight. Thus, multi-material systems are used. Conventional joining techniques reach their limits when joining different materials due to different thermal expansion, unequal stiffness or chemical incompatibilities. This is why additional joining elements or adhesives are used. These must be viewed critically regarding a lightweight and resource-efficient production, since they add weight or complicate the recycling process of these components. Consequently, there is a great and growing need for new versatile joining technologies in order to overcome these challenges and to be able to react to changing process parameters and boundary conditions. Joining without an auxiliary element using pin structures formed directly from the sheet metal plane is one approach to meet these challenges. These pin structures are then joined by direct pressing into the joining partner. This is possible with a variety of material combinations, but is advantageous with regard to continuous fibre-reinforced thermoplastic composites (CFRTP), as the fibres do not have to be cut when joining CFRTP using pin structures. In this paper, the formability of pin structures made of a dual-phase steel DP600 (HCT590X + Z) is investigated. The extruded pin structures are joined by direct pin pressing with an EN AW-6014 to form tensile shear specimens. Different joining strategies are investigated to compare their influence on the joint strength. The results have shown that it is feasible to form suitable pins from a DP600 dual-phase steel to produce reliable connections with an aluminium sheet joined by direct pin pressing.

2019 ◽  
Vol 50 (4) ◽  
pp. 2029-2036
Author(s):  
Amit A. Kuril ◽  
G. D. Janaki Ram ◽  
Srinivasa R. Bakshi

Wear ◽  
2021 ◽  
pp. 203742
Author(s):  
Simon Schöler ◽  
André Langohr ◽  
Fahrettin Özkaya ◽  
Kai Möhwald ◽  
Bernd-Arno Behrens ◽  
...  

2018 ◽  
Vol 24 (2) ◽  
pp. 163 ◽  
Author(s):  
Yazid Helal ◽  
Zakaria Boumerzoug

<p class="AMSmaintext"> </p><p class="AMSmaintitle">Abstract</p><p class="AMSmaintext">In this work, the effect of the pin diameter on the microstructure, hardness and strength of friction stir welded 6061-T6 aluminum alloy to dual phase steel have been investigated. Microhardness measurements, tensile shear tests, optical microscopy, and scanning electron microscopy with energy dispersive spectroscope (EDS) were the main techniques used. The results showed that friction stir welding can be used for the joining of dissimilar 6061-T6 aluminum alloy to dual phase steel. We have found that the maximum strength is obtained after welding with the highest pin diameter. </p>


2021 ◽  
Vol 5 (1) ◽  
pp. 25
Author(s):  
David Römisch ◽  
Martin Kraus ◽  
Marion Merklein

Due to stricter emission targets in the mobility sector and the resulting trend towards lightweight construction in order to reduce weight and consequently emissions, multi-material systems that allow a material to be placed in the right quantity and in the right place are becoming increasingly important. One major challenge that is holding back the rapid and widespread use of multi-material systems is the lack of adequate joining processes that are suitable for joining dissimilar materials. Joining processes without auxiliary elements have the advantage of a reduced assembly effort and no additional added weight. Conventional joining processes without auxiliary elements, such as welding, clinching, or the use of adhesives, reach their limits due to different mechanical properties and chemical incompatibilities. A process with potential in the field of joining dissimilar materials is joining without an auxiliary element using pin structures. However, current pin manufacturing processes are mostly time-consuming or can only be integrated barely into existing industrial manufacturing processes due to their specific properties. For this reason, the present work investigates the production of single- and multi-pin structures from high-strength dual-phase steel HCT590X + Z (DP600, t0 = 1.5 mm) by cold extrusion directly out of the sheet metal. These structures are subsequently joined with an aluminium sheet (EN AW-6014-T4, t0 = 1.5 mm) by direct pin pressing. For a quantitative evaluation of the joint quality, tensile shear tests are carried out and the influence of different pin heights, pin number, and pin arrangements, as well as different joining strategies on the joint strength is experimentally evaluated. It is proven that a single pin structure with a diameter of 1.5 mm and an average height of 1.86 mm achieves a maximum tensile shear force of 1025 N. The results reveal that the formation of a form-fit during direct pin pressing is essential for the joint strength. By increasing the number of pins, a linear increase in force could be demonstrated, which is independent of the arrangement of the pin structures.


Sign in / Sign up

Export Citation Format

Share Document