Improved Optical and Electronic Properties of Single-Layer MoS2 by Co Doping for Promising Intermediate - Band Materials

2022 ◽  
Vol 905 ◽  
pp. 96-102
Author(s):  
Ai Yu Li ◽  
Han Xin Shen ◽  
Xiao Chun Wang

Owing to its unique optical and electronic characteristics, two-dimensional MoS2 has been widely explored in the past few years. Using first-principle calculations, we shed light on that the substitutional doping of Co can induce the half-filled intermediate states in the band gap of monolayer MoS2. The calculated absorption spectrum presents an enhancement of the low-energy photons (0.8 eV–1.5 eV), which is desired for intermediate-band solar cells. When the doping concentration increases, the reflectivity of the infrared and visible light (0.8 eV-4.0 eV) reduces, resulting in an improved photovoltaic efficiency of the material. Our results shed light on the application of heavily Co-doped MoS2 as intermediate band solar cell material.

2010 ◽  
Vol 74 ◽  
pp. 151-156 ◽  
Author(s):  
Kefren Sánchez ◽  
Irene Aguilera ◽  
Pablo Palacios ◽  
Perla Wahnón

First-principles calculations carried out for compounds based on Si implanted with different species, as Ti or chalcogens (S, Se, Te), show them as solid candidates to intermediate band (IB) photovoltaic materials. This DFT study predicts electronic structures, formation energies, relaxed atomic structures, optoelectronic properties, diffusion paths, for supercells containing up to several hundreds of atoms. The knowledge of Si-based devices is a relevant factor to facilitate the creation of an IB solar cell. Crystalline samples with a concentration of Ti several orders of magnitude above the solubility limit have been already grown. Formation energy calculations agree with the experiment in showing mainly interstitial implantation. Calculated electronic structure presents an IB, which is in agreement with electrical measurements and models, and is expected to cause an increase of the absorption coefficient across the solar spectrum. Chalcogen-implanted Si is an efficient IR absorber when implantation is carried out at ultra-high concentrations. Substitutional implantation produces a filled band inside Si band-gap and our calculations predict that plausible co-doping with IIIA atoms (as Al, B) would allow to obtain an IB fulfilling all the needed requirements.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Shunya Naitoh ◽  
Yoshitaka Okada

An intermediate band solar cell (IBSC) whose equivalent circuit is similar to a multijunction (MJ) solar cell but with an additional parallel diode connection is shown to be more robust to spectral variation than a series-connected MJ solar cell. We have calculated the limiting efficiencies of IBSC and MJ solar cells using the measured solar spectra in Japan. Even though the maximum efficiency of an IBSC is lower than a triple junction (3J) solar cell at airmass (AM)1.5, the IBSC would generate more annual electricity by 1% than 3J cell at 1 sun, if they had been optimized at AM1.5.


2008 ◽  
Vol 1101 ◽  
Author(s):  
Antonio Martí ◽  
Elisa Antolín ◽  
Enrique Cánovas ◽  
Pablo García Linares ◽  
Antonio Luque

AbstractThis paper discusses several topics related to light management that improve our understanding of the performance and potential of the intermediate band solar cell (IBSC). These topics are photon recycling, photon selectivity and light confinement. It is found that neglecting photon recycling leads to underestimate the limiting efficiency of the IBSC in 7 points (56.1 % vs 63.2 %). Light trapping allows to effectively absorbing photons whose energy is associated to the weakest of the optical transitions in the IBSC, allowing also for higher efficiencies with lower device thickness. The impact of photon selectivity on the cell performance is also discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 344
Author(s):  
Yasushi Shoji ◽  
Ryo Tamaki ◽  
Yoshitaka Okada

From the viewpoint of band engineering, the use of GaSb quantum nanostructures is expected to lead to highly efficient intermediate-band solar cells (IBSCs). In IBSCs, current generation via two-step optical excitations through the intermediate band is the key to the operating principle. This mechanism requires the formation of a strong quantum confinement structure. Therefore, we focused on the material system with GaSb quantum nanostructures embedded in AlGaAs layers. However, studies involving crystal growth of GaSb quantum nanostructures on AlGaAs layers have rarely been reported. In our work, we fabricated GaSb quantum dots (QDs) and quantum rings (QRs) on AlGaAs layers via molecular-beam epitaxy. Using the Stranski–Krastanov growth mode, we demonstrated that lens-shaped GaSb QDs can be fabricated on AlGaAs layers. In addition, atomic force microscopy measurements revealed that GaSb QDs could be changed to QRs under irradiation with an As molecular beam even when they were deposited onto AlGaAs layers. We also investigated the suitability of GaSb/AlGaAs QDSCs and QRSCs for use in IBSCs by evaluating the temperature characteristics of their external quantum efficiency. For the GaSb/AlGaAs material system, the QDSC was found to have slightly better two-step optical excitation temperature characteristics than the QRSC.


2020 ◽  
Vol 125 (24) ◽  
Author(s):  
I. Ramiro ◽  
J. Villa ◽  
J. Hwang ◽  
A. J. Martin ◽  
J. Millunchick ◽  
...  

2015 ◽  
Vol 141 ◽  
pp. 322-330 ◽  
Author(s):  
Mohammadreza Nematollahi ◽  
Xiaodong Yang ◽  
Lars Martin Sandvik Aas ◽  
Zahra Ghadyani ◽  
Morten Kildemo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document