Optimization of Red Pigment Production by Solid State Fermentation Using Oil Palm Frond

2021 ◽  
Vol 1025 ◽  
pp. 150-156
Author(s):  
Nur Fathin Shamirah Daud ◽  
Farhan Mohd Said ◽  
Nur Hidayah Mat Yasin ◽  
Mior Ahmad Khusairi Mohd Zahari

Extensive study available on Monascus in solid-state fermentation (SSF), however, optimization study of Monascus sp. cultivated in stirred drum bioreactor is insufficiently reported. In this study, the Box–Behnken design (BBD) was employed for the analysis of the simultaneous effect of initial moisture content, aeration rate and peptone concentration to the red pigments production of Monascus purpureus FTC 5357 by using oil palm frond (OPF) in 5 L stirred drum bioreactor. A three-parameters, three-level BBD was used for the optimization. Based on the ANOVA analysis performed, initial moisture content, aeration rate and peptone concentration contributed significantly to the red pigments production. The optimal fermentation conditions resulted were initial moisture content; 70 % w/w, aeration rate; 1.30 vvm and peptone concentration; 4.40 % w/w. Under these conditions, the red pigments production were obtained to be 18.59 Au/g.d. The red pigments produced through SSF using OPF as a substrate by Monascus purpureus FTC 5357 has a great potential to be utilized as a source of pigment for food in future.

Author(s):  
N. A. Nata ◽  
F. Mohd Said ◽  
S. Md Shaarani@Md Nawi ◽  
N. Harun

Lovastatin is a potent drug for lowering the blood cholesterol. It is a competitive inhibitor of 3-hyroxy3-methyl glutaryl coenzyme A (HMG-CoA) reductase, which is a key enzyme in the cholesterol production pathway. Lovastatin increases the good cholesterol or high-density lipoproteins to prevent the formation of plaque inside the blood vessels. This study aims to develop a process model of lovastatin production, produced by Monascus purpureus under solid-state fermentation using oil palm frond. SuperPro Design V9.5 software was used to develop and simulate the process model. Three parameters which are initial moisture content, composition of peptone and potassium, were varied to investigate their effects on lovastatin production. The optimum condition simulated using the process model at pH 7 with 60% initial moisture content, 0.0075 kg/hr of potassium, and 0.0075 kg/hr of peptone was able to produce 0.0288 kg/kg of lovastatin. The simulated results show good agreement with experimental work, with low percentage error of 5.77%, and provide a good approximation on the production of lovastatin under various process operating conditions.


3 Biotech ◽  
2018 ◽  
Vol 8 (5) ◽  
Author(s):  
Mohamed Roslan Mohamad Ikubar ◽  
Musaalbakri Abdul Manan ◽  
Madihah Md. Salleh ◽  
Adibah Yahya

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Faseleh Jahromi ◽  
Juan Boo Liang ◽  
Yin Wan Ho ◽  
Rosfarizan Mohamad ◽  
Yong Meng Goh ◽  
...  

Ability of two strains ofAspergillus terreus(ATCC 74135 and ATCC 20542) for production of lovastatin in solid state fermentation (SSF) using rice straw (RS) and oil palm frond (OPF) was investigated. Results showed that RS is a better substrate for production of lovastatin in SSF. Maximum production of lovastatin has been obtained usingA. terreusATCC 74135 and RS as substrate without additional nitrogen source (157.07 mg/kg dry matter (DM)). Although additional nitrogen source has no benefit effect on enhancing the lovastatin production using RS substrate, it improved the lovastatin production using OPF with maximum production of 70.17 and 63.76 mg/kg DM forA. terreusATCC 20542 andA. terreusATCC 74135, respectively (soybean meal as nitrogen source). Incubation temperature, moisture content, and particle size had shown significant effect on lovastatin production (P<0.01) and inoculums size and pH had no significant effect on lovastatin production (P>0.05). Results also have shown that pH 6, 25°C incubation temperature, 1.4 to 2 mm particle size, 50% initial moisture content, and 8 days fermentation time are the best conditions for lovastatin production in SSF. Maximum production of lovastatin using optimized condition was 175.85 and 260.85 mg/kg DM forA. terreusATCC 20542 and ATCC 74135, respectively, using RS as substrate.


2012 ◽  
Vol 506 ◽  
pp. 607-610 ◽  
Author(s):  
N. Thongjun ◽  
Lerpong Jarupan ◽  
Chiravoot Pechyen

Oil palm frond pulp (OPF) was blended with activated carbon for the purpose of active packaging in this preliminary study. It was aimed to investigate the effect of in-situ activated carbon on physical and mechanical properties of the pulp handsheets made from OPF. Testing of property performances of the resulted handsheets included density, moisture content, thickness swelling, folding, tensile strength, %elongation, stiffness, and modulus of rupture. Ultimately, the intention is to use for prospected active packaging for fresh produce. OPF pulp was prepared by the kraft process. The pulp stock was mixed with different proportions of activated carbon (0, 10, 20, and 30% w/w). The results showed that an increased proportion of activated carbon decreased density and thickness selling, but had no effect on moisture content.


2014 ◽  
Vol 1010-1012 ◽  
pp. 42-47
Author(s):  
Jun Yao He ◽  
Xuan Yi Ye ◽  
Qing Zhi Ling ◽  
Li Hui Dong

The production of laccase by solid-state fermentation (SSF) usingArmillariella tabescenswas studied. Wheat bran was selected to be the most suitable solid substrate. Several operational variables including nitrogen source, moisture content, copper and aromatic inducers were investigated. The results showed that the complex nitrogen sources, NH4NO3coupled with peptone was shown to be the best nitrogen source. 75% of initial moisture content was proved to be appropriate. Copper significantly influenced the laccase production and the yield of laccase was improved by addition of 1.5 mM copper sulphate in the medium. Guaiacol efficiently induced the laccase production and the enzyme yield (24500U/g) was enhanced by 32% compared with he control without any aromatic inducers. Efficient production of laccase fromA. tabescenscan be achieved by solid-state fermentation.


Sign in / Sign up

Export Citation Format

Share Document