Design in Superplastic Forming Process by Rigid Visco Plastic Shell FEM

1996 ◽  
Vol 243-245 ◽  
pp. 735-738 ◽  
Author(s):  
Kai Feng Zhang ◽  
Z.R. Wang ◽  
Xiao Ming Lai ◽  
G.L. Kan
2021 ◽  
Vol 6 (4) ◽  
pp. 251-261
Author(s):  
Manh Tien Nguyen ◽  
Truong An Nguyen ◽  
Duc Hoan Tran ◽  
Van Thao Le

This work aims to optimize the process parameters for improving the wall thickness distribution of the sheet superplastic forming process of AA7075 alloy. The considered factors include forming pressure p (MPa), deformation temperature T (°C), and forming time t (minutes), while the responses are the thinning degree of the wall thickness ε (%) and the relative height of the product h*. First, a series of experiments are conducted in conjunction with response surface method (RSM) to render the relationship between inputs and outputs. Subsequently, an analysis of variance (ANOVA) is conducted to verify the response significance and parameter effects. Finally, a numerical optimization algorithm is used to determine the best forming conditions. The results indicate that the thinning degree of 13.121% is achieved at the forming pressure of 0.7 MPa, the deformation temperature of 500°C, and the forming time of 31 minutes.


2018 ◽  
Vol 385 ◽  
pp. 391-396
Author(s):  
Mei Ling Guo ◽  
Ming Jen Tan ◽  
Xu Song ◽  
Beng Wah Chua

Hybrid superplastic forming (SPF) is a novel sheet metal forming technique that combines hot drawing with gas forming process. Compared with the conventional SPF process, the thickness distribution of AZ31B part formed by this hybrid SPF method has been significantly improved. Additionally, the microstructure evolution of AZ31 was examined by electron backscatter diffraction (EBSD). Many subgrains with low misorientation angle were observed in the coarse grains during SPF. Based on the tensile test results, parameters of hyperbolic sine creep law model was determined at 400 oC. The hybrid SPF behavior of non-superplastic grade AZ31B was predicted by ABAQUS using this material forming model. The FEM results of thickness distribution, thinning characteristics and forming height were compared with the experimental results and have shown reasonable agreement with each other.


Author(s):  
Frank G. Lee ◽  
M. David Hanna

A parametric study was conducted to determine how the design features and forming parameters affect part thinning and forming time in the Superplastic Forming Process (SPF). Explicit formulas, describing the maximum percent thinning and the forming time for channel parts formed by the SPF process as a function of eight designs and forming parameters, were derived. The formulas are good approximations of those obtained by finite element simulation analyses and physical experiments. Thinning of the channels was influenced most by the component aspect ratio (height versus width) and entry radius at top of the channel forming tool. The forming time was most influenced by strain rate, aspect ratio and tool bottom radius. A design domain can be established to avoid excessive thinning. The Taguchi design-of-experiment method was applied to select parameter combinations, and the MARC finite element code was used to conduct sectional analysis for various combinations.


2005 ◽  
Vol 475-479 ◽  
pp. 3051-3054 ◽  
Author(s):  
Gang Wang ◽  
Jun Chen ◽  
X.Y. Ruan

The complex superplastic forming (SPF) technology applying gas pressure and compressive axial load is an advanced forming method for bellows made of titanium alloy, which forming process consists of the three main forming phases namely bulging, clamping and calibrating phase. The influence of forming gas pressure in various phases on the forming process are analyzed and models of forming gas pressure for bellows made of titanium alloy are derived according to the thin shell theory and plasticity deformation theory. Using model values, taking a two-convolution DN250 bellows made of Ti-6Al-4V titanium alloy as an example, a series of superplastic forming tests are performed to evaluate the influence of the variation of forming gas pressure on the forming process. According to the experimental results models are corrected to make the forming gas pressures prediction more accurate.


2012 ◽  
Vol 735 ◽  
pp. 204-209 ◽  
Author(s):  
Nagore Otegi ◽  
Lander Galdos ◽  
Iñaki Hurtado ◽  
Sean B. Leen

This paper describes a new approach for identification of the optimum pressure history for SPF processes, based on mechanisms-based hyperbolic constitutive equations. This equation set has been modified to incorporate the effect of the damage behaviour the material suffers due to the cavitational evolution of Al-5083 superplastic alloy. A large deformation, multiaxial formulation of the constitutive equation set is implemented and applied to finite element modelling of a bulge test forming process to characterise the cavitation evolution behaviour in the bulge test, using conventional (constant strain rate) and the newly proposed (variable strain rate) strategy.


2012 ◽  
Vol 6 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Jens Kappes ◽  
Mathias Liewald ◽  
Simon Jupp ◽  
Christoph Pirchl ◽  
Roman Herstelle

2013 ◽  
Vol 327 ◽  
pp. 112-116 ◽  
Author(s):  
Mao Ting Li ◽  
Yong Zhang ◽  
Chui You Kong

Basing on software MSC. Marc of non-linear finite element analysis, the article has studied the material flow in the process of aluminum alloy superplastic gas bulging forming. By analyzing of the thickness distribution of the molding member it confirm the danger zone in the forming process. By analyzing of pressure loading curve influence on forming part. Because the aluminum alloy is widely used in the industrial departments, it is supposed to improve the ability of forming ability of aluminum alloy by researching the superplastic forming.


2013 ◽  
Vol 455 ◽  
pp. 163-166
Author(s):  
Yi Ping Chen ◽  
Zhao Fan ◽  
Dong Hai Cheng ◽  
Dean Hu

Forming process of TC4 titanium alloy laser weld joint during superplastic deformation is simulated. The stress and strain curve, which is obtained in the simulation, is compared with that obtained by hot tensile experiments. The simulation results provides a basis for subsequent laser welding / superplastic forming technology, and proposes outlook to the analyze problems for laser welding / superplastic forming (LBW / SPF) technology.


Sign in / Sign up

Export Citation Format

Share Document