taguchi design of experiment
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Mohamed Abouelmajd ◽  
Ahmed Bahlaoui ◽  
Ismail Arroub ◽  
Maria Zemzami ◽  
Nabil Hmina ◽  
...  

Fused deposition modeling (FDM) is one of the most used additive manufacturing processes in the current time. Predicting the impact of different 3D printing parameters on the quality of printed parts is one of the critical challenges facing researchers. The present paper aims to examine the effect of three FDM process parameters, namely deposition velocity, extrusion temperature, and raster orientation on the bending strength, stiffness, and deflection at break of polylactic acid (PLA) parts using Taguchi design of experiment technique. The results indicate that the temperature has the highest impact on the mechanical properties of PLA specimens followed by the velocity and the orientation. The optimum composition offering the best mechanical behavior was determined. The optimal predicted response was 159.78 N, 39.92 N/mm, and 12.55 mm for the bending strength, bending stiffness, and deflection at break, respectively. The R2 obtained from analysis of variance (ANOVA) showed good agreement between the experimental results and those predicted using a regression model.


2020 ◽  
pp. 089270572096456
Author(s):  
M Heidari-Rarani ◽  
N Ezati ◽  
P Sadeghi ◽  
MR Badrossamay

Fused deposition modeling (FDM) is the most common method for additive manufacturing of polymers, which is expanding in various engineering applications due to its ability to make complex parts readily. The mechanical properties of 3D printed parts strongly depend on the correct selection of the process parameters. In this study, the effect of three important process parameters such as infill density, printing speed and layer thickness were investigated on the tensile properties of polylactic acid (PLA) specimens. Taguchi design of experiment method is applied to reduce the number of experiments and find the optimal parameters for maximum mechanical properties, minimum weight and minimum printing time. Experimental results showed that the optimum process parameters for the modulus of elasticity and ultimate tensile strength were infill density of 80%, printing speed of 40 mm/s and layer thickness of 0.1 mm, while for the failure strain were the infill density of 80%, printing speed of 40 mm/s and layer thickness of 0.2 mm. Finally, the accuracy of the Taguchi method was assessed for prediction of mechanical properties of FDM-3D printed specimens.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1616
Author(s):  
Saed Amer ◽  
Houda Al Zarkani ◽  
Stefano Sfarra ◽  
Mohammed Omar

Infrared thermography (IRT) is a competitive method for nondestructive testing; yet it is susceptible to errors when testing objects with complex geometries. This work investigates the effects of regulating different thermographic testing parameters to optimize the IRT outcomes when testing complex shaped geometries, particularly cylindrical coupons. These parameters include the scanning routine, feed-rate, and heat intensity. Fine-tuning these parameters will be performed with respect to three different variables consisting of workpiece density, defect size, and defect depth. The experimental work is designed around 3D-printed cylindrical coupons, then the obtained thermal images are stitched via image processing tool to expose defects from different scans. The analysis employs a Signal-to-Noise Ratio (SNR) metric in an orthogonal tabulation following a Taguchi Design of Experiment. Moreover, test sensitivity and the best combination of factor levels are determined using Analysis of Means (ANOM) and Analysis of Variance (ANOVA). The outcomes show that the heating intensity factor is the most dominant in exposing flaws with close to 40% mean shift and up to 47% variance fluctuation. The paper introduces the tools employed in the study, and then explains the methodology followed to test one sample quadrant. The results for running the testing on all the scenarios are presented, interpreted, and their implications are recommended.


Fibers ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 29
Author(s):  
Jopeth Ramis ◽  
Bryan Pajarito ◽  
Crisneil Natividad ◽  
Mark Jared Van Ocampo ◽  
Crizaldy Tugade ◽  
...  

We report the synthesis of presumably a “nanoridge” from the electrospinning of a hydrophilic polymer–protein blend. The material exhibits vertical elevation from the substrate, distinct from the morphologies seen in electrospinning. It is hypothesized that the formation of the nanostructured ridges is due to the migration of the charged protein to the apex through a highly polarized electric field in electrospinning conditions. In this study, we assessed the polyvinyl alcohol–egg albumin (PVA–EA) system in a solvent comprising of water, formic and acetic acid, together with the tip-to-collector distance (TCD) and solution flowrate. To quantify the factor effects in the surface properties of the material, a Taguchi design of experiment was used. The ridge heights observed ranged from 84.8–639.9 nm, and the material height is predominantly affected by the PVA–EA ratio and solution flow rate. The root mean square roughness was influenced by the TCD and flow rate, which has values ranging from 11.37–57.56 nm. In evaluating the sharpness of the ridge, we used the radius of curvature, where the TCD highly affects the apex sharpness. The work offers not just a likely new class of morphology, but a new perspective on the surface characterization of an electrospun material which could affect the performance of such a use in biological and physical systems.


2020 ◽  
Vol 10 (1) ◽  
pp. 56-65
Author(s):  
Muhammad Irfan Jalees

Abstract Contamination in drinking water from heavy metals like Pb2+ has severe effects on health. In this study, potato peel (PP) was used as the substrate and magnetic iron nanoparticles (MI) were deposited on PP using a co-precipitated method. Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the deposition of MI on PP. The L16 (4^4) method of Taguchi design of experiment (DOE) was used for the optimization of adsorption condition, i.e., at 6 pH, 10 min of contact time, and a dose of 15 g/L can give more than 90% removal efficiency of Pb2+ using PP-MI. Contour maps, Taguchi response analysis, and analysis of variance (ANOVA) suggested that pH has a dominant contribution in the removal of Pb2+. The adsorption process was favorable, spontaneous, and exothermic in nature and was followed by pseudo second order kinetics. A comparison of the sorption capacity of PP-MI for Pb2+ with literature values suggested that PP-MI has good potential for the removal of Pb2+. This article has been made Open Access thanks to the generous support of a global network of libraries as part of the Knowledge Unlatched Select initiative.


A tremendous research has been notices in the field of three dimensional printing. An experimental study has been carried out for three dimensional printing to analyses the surface roughness and ultimate tensile strength of three different materials. The study has been conducted using Taguchi design of experiment. from the study it has been depicted that the infill percentage has a significant effect on the output.


Sign in / Sign up

Export Citation Format

Share Document