A TEM Study of Crystal Growth in a Y-Si-AI-O-N Glass Ceramic System

2000 ◽  
Vol 325-326 ◽  
pp. 289-294 ◽  
Author(s):  
W.T. Young ◽  
L.K.L. Falk ◽  
H. Lemercier ◽  
Stuart Hampshire
2019 ◽  
Vol 44 (2) ◽  
pp. 200-209 ◽  
Author(s):  
F Murillo-Gómez ◽  
RB Wanderley ◽  
MF De Goes

SUMMARY The aim of this study was to determine whether using a silane-containing universal adhesive as a silane primer in glass-ceramic/resin cement systems affects biaxial flexural strength (BFS) and bonded interface integrity after loading. Glass-ceramic (IPS e.max CAD, Ivoclar/Vivadent, Schaan, Liechtenstein) disc-shaped specimens (6.5±0.1mm in diameter, 0.5±0.1mm thick) were etched with 5% hydrofluoric acid (HF) for 20 seconds and divided into four groups of 30 specimens, to be treated as follows: 1) One bottle silane primer (RCP); 2) Separate application of silane and adhesive (RCP+SB); 3) Silane-containing universal adhesive (SBU); 4) No treatment (C). After silanization, all specimens were resin cement– coated and polymerized for 40 seconds. Each specimen layer was measured, as well as each assembly's thickness, using a digital caliper and scanning electron microscope (SEM). Specimens were stored for 24 hours and submitted to a BFS test (1.27 mm/min). BFS values were calculated using the bilayer disc-specimen solution. Bonded interfaces were analyzed on fractured fragments using SEM. One-way ANOVA and Tukey tests (α=0.05) were applied, as well as the Weibull analysis. Factor “silane treatment” was statistically significant (p<0.0001). RCP+SB (372.2±29.4 MPa) and RCP (364.2±29.5 MPa) produced significantly higher BFS than did the C (320.7±36.3 MPa) or SBU (338.0±27.1 MPa) groups. No differences were found in the Weibull modulus (m: RCP: 10.1-17.3; RCP+SB: 10.1-17.0; SBU: 12.3-22.4; C: 7.4-12.9). Bonded interface analysis exhibited ceramic-cement separation (SBU, C) and voids within the resin cement layer (all groups). Neither the ceramic/cement system's BFS nor its bonded interface stability were improved by SBU after loading.


1986 ◽  
Vol 5 (12) ◽  
pp. 1309-1312 ◽  
Author(s):  
P. R. Carpenter ◽  
M. Campbell ◽  
R. D. Rawlings ◽  
P. S. Rogers

2009 ◽  
Vol 117 (1365) ◽  
pp. 717
Author(s):  
Jin Man HAN ◽  
Dae Soo JUNG ◽  
Jang Heui YI ◽  
Yun Chan KANG

2020 ◽  
Vol 12 (4) ◽  
pp. 510-515
Author(s):  
Byeongguk Kang ◽  
Seunggu Kang

Diopside is a ceramic material with excellent properties including a low dielectric constant, high thermal conductivity, low sintering temperature below 1000 °C, and high mechanical strength. It has been applied to wireless and optical communications, substrates for touch panels, lenses for UV-LED, building materials, and so on. In this study, glass-ceramics containing nano-sized diopside crystals were fabricated, and their transmittance at visible light and photoluminescence were evaluated. In particular, TiO2 was added as a nucleating agent to suppress the surface crystallization phenomenon and Mn was used as a dopant to emit red light. The glass-ceramics were prepared by heat treatment at a temperature lower than the maximum crystal growth temperature (TP) calculated from the non-isothermal analysis method using differential thermal analysis (DTA) for the formation of nano-sized crystals. For glass containing 20 wt% of TiO2, the Avrami constant was calculated to be 2.23 and the activation energy required for crystal growth to be 549 kJ/mol, reflecting typical bulk crystallization behavior. Glass-ceramics with high light transmittance up to 70% were obtained by inducing the bulk crystallization behavior, and the diopside crystal size was less than 10 nm, which was equal to or higher than that of commercialized transparent glass-ceramic products. Glass-ceramic specimens doped with Mn showed luminescence of 736∼766 nm wavelength at excitation light of 365 nm wavelength. The emission peak intensity increased with the amount of dopant added, but gradually decreased with increasing crystallinity of the diopside phase.


Sign in / Sign up

Export Citation Format

Share Document