Impact of Silane-containing Universal Adhesive on the Biaxial Flexural Strength of a Resin Cement/Glass-ceramic System

2019 ◽  
Vol 44 (2) ◽  
pp. 200-209 ◽  
Author(s):  
F Murillo-Gómez ◽  
RB Wanderley ◽  
MF De Goes

SUMMARY The aim of this study was to determine whether using a silane-containing universal adhesive as a silane primer in glass-ceramic/resin cement systems affects biaxial flexural strength (BFS) and bonded interface integrity after loading. Glass-ceramic (IPS e.max CAD, Ivoclar/Vivadent, Schaan, Liechtenstein) disc-shaped specimens (6.5±0.1mm in diameter, 0.5±0.1mm thick) were etched with 5% hydrofluoric acid (HF) for 20 seconds and divided into four groups of 30 specimens, to be treated as follows: 1) One bottle silane primer (RCP); 2) Separate application of silane and adhesive (RCP+SB); 3) Silane-containing universal adhesive (SBU); 4) No treatment (C). After silanization, all specimens were resin cement– coated and polymerized for 40 seconds. Each specimen layer was measured, as well as each assembly's thickness, using a digital caliper and scanning electron microscope (SEM). Specimens were stored for 24 hours and submitted to a BFS test (1.27 mm/min). BFS values were calculated using the bilayer disc-specimen solution. Bonded interfaces were analyzed on fractured fragments using SEM. One-way ANOVA and Tukey tests (α=0.05) were applied, as well as the Weibull analysis. Factor “silane treatment” was statistically significant (p<0.0001). RCP+SB (372.2±29.4 MPa) and RCP (364.2±29.5 MPa) produced significantly higher BFS than did the C (320.7±36.3 MPa) or SBU (338.0±27.1 MPa) groups. No differences were found in the Weibull modulus (m: RCP: 10.1-17.3; RCP+SB: 10.1-17.0; SBU: 12.3-22.4; C: 7.4-12.9). Bonded interface analysis exhibited ceramic-cement separation (SBU, C) and voids within the resin cement layer (all groups). Neither the ceramic/cement system's BFS nor its bonded interface stability were improved by SBU after loading.

2016 ◽  
Vol 32 ◽  
pp. e15-e16
Author(s):  
F. Murillo-Gómez ◽  
R.B.W. Lima ◽  
M.F. De Goes

Author(s):  
Fabián Murillo Gómez ◽  
Mário Fernando De Góes

<p><span>The aim of this study is to determine the effect of different silane-containing solutions on ceramic-cement bonding and their interaction with different dual-cure resin cements. Forty five glass- ceramic plaques (IPS e.max CAD®) were sandblasted with aluminum oxide for 5s, etched with 10% hydrofluoric acid gel (HF) for 20s and then divided in three groups of 15 each to be treated with different silane-containing solutions: RelyX Ceramic Primer® (AS), Scotchbond Universal® (SU), Clearfil Ceramic Primer® (CP). Then each group was divided in five groups of three plaques to receive the following dual-cure resin cements: Conventional: RelyX Ultimate (RU), RelyX ARC (AR), VarioLink II (VL); and two self-adhesive: RelyX UNICEM 2 (U2), and BiFix (BF). Eight cement cylinders of each cement were distributed on each plaque and polymerized, summarizing 24 cylinders per group. After 24 h storage in relative humidity at 37°C, each cylinder was subjected to a microshear testing. Failure mode was analyzed using scanning electron microscopy (SEM). Data were statistically analyzed with two-way ANOVA (resin cement and silane ) and Tukey test (p≤0.05). Both factors significantly influenced the results and also interaction between them was detected (p=0.0001). μSBS was significantly higher when ceramic was treated with AS for all cements. Most of cements showed no statistically different means when treated with SU and CP, except BF-SU and AR-CP that showed significantly lower means within their treatment groups. Some incomplete polymerization areas were observed in SEM images for those cases. Cohesive failure in resin cement type was predominant with higher results while adhesive with lower results. The sole silane solution improved better bonding than the universal adhesive and the ceramic primer. In general, universal adhesive and ceramic primer produced acceptable mean values and they were statistically comparable. Compatibility between silane solutions and dual-cure resin cements may be material dependent. </span></p>


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yoon Lee ◽  
Jae-Hoon Kim ◽  
Jung-Soo Woo ◽  
Young-Ah Yi ◽  
Ji-Yun Hwang ◽  
...  

Objective. To evaluate the microshear bond strength (μSBS) of self-adhesive resin (SA) cement on leucite-reinforced glass-ceramic using silane or universal adhesive.Materials and Methods. Ceramic blocks were etched with 9.5% hydrofluoric acid and divided into three groups (n=16): (1) negative control (NC) without treatment; (2) Single Bond Universal (SBU); (3) RelyX Ceramic Primer as positive control (PC). RelyX Unicem resin cement was light-cured, andμSBS was evaluated with/without thermocycling. TheμSBS was analyzed using one-way analysis of variance. The fractured surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM).Results. Without thermocycling,μSBS was highest for PC (30.50 MPa ± 3.40), followed by SBU (27.33 MPa ± 2.81) and NC (20.18 MPa ± 2.01) (P<0.05). Thermocycling significantly reducedμSBS in SBU (22.49 MPa ± 4.11) (P<0.05), but not in NC (20.68 MPa ± 4.60) and PC (28.77 MPa ± 3.52) (P>0.05). PC and NC predominantly fractured by cohesive failure within the ceramic and mixed failure, respectively.Conclusion. SBU treatment improvesμSBS between SA cement and glass ceramics, but to a lower value than PC, and the improvement is eradicated by thermocycling. NC exhibited the lowestμSBS, which remained unchanged after thermocycling.


Cerâmica ◽  
2020 ◽  
Vol 66 (379) ◽  
pp. 236-242 ◽  
Author(s):  
A. D. Nogueira ◽  
P. H. Corazza ◽  
O. E. Pecho ◽  
M. M. Perez ◽  
M. Borba

Abstract Conventional flexural strength tests of restorative materials neglect the effect of essential variables that can affect their mechanical behavior. The purpose of this study was to evaluate the effect of cementation on the mechanical behavior of a nanoceramic resin. A nanoceramic resin (LU) and a leucite-reinforced glass-ceramic (IE) were evaluated. Non-cemented specimens of the materials were produced and subjected to biaxial flexural strength test ( σ f , n = 30 ). Cemented specimens were constituted of the restorative material bonded with resin cement onto a dentin analog substrate. Cemented specimens were subjected to the monotonic compressive load test ( L f , n = 20 ). Vickers microhardness (HV) and translucency parameter (TP) of the materials were characterized. Data were analyzed using t-test (σf and TP), Mann-Whitney test (Lf and HV), and Weibull analysis (σf and Lf, α = 0 . 05). Non-cemented LU showed higher σf and Weibull modulus (m) than IE. When cemented to the substrate, LU showed higher Lf than IE; however, the m-value was similar among groups. LU showed lower HV than IE and higher TP values. Cementation influenced the mechanical behavior and failure mode of the nanoceramic resin.


1998 ◽  
Vol 14 (6) ◽  
pp. 412-416 ◽  
Author(s):  
Anthony Johnson ◽  
Mohammed Y Shareef ◽  
Jennifer M Walsh ◽  
Paul V Hatton ◽  
Richard van Noort ◽  
...  

2019 ◽  
Vol 30 (2) ◽  
pp. 164-170 ◽  
Author(s):  
Fernanda P. Silva ◽  
Ana L. R. Vilela ◽  
Matheus M. G. Almeida ◽  
André R. F. Oliveira ◽  
Luís H. A. Raposo ◽  
...  

Abstract This study evaluated the effect of different finishing-polishing protocols on surface roughness, gloss, morphology and biaxial flexural strength of pressable fluorapatite glass ceramic. Thirty ceramic discs (12x1 mm) were produced and divided into five groups (n=6): CT: control (glaze); DA: fine grit diamond bur; DG: DA + new glaze layer; DP: DA + felt disk with fine grit diamond paste; DK: DA+ sequential polishing with silicon abrasive instruments, goat hair brush and cotton wheel. The specimens were analyzed for surface roughness (Ra) under profilometry and atomic force microscopy (AFM). Gloss was measured with spectrophotometry and micromorphology with scanning electron microscopy (SEM). Flexural strength was assessed by biaxial flexural strength test. Data were analyzed using one-way ANOVA and Tukey’s post hoc test (a=0.05). DK showed the lowest surface roughness values and DA presented the highest in the perfilometer analysis. No significant differences were observed in the AFM for the CT, DG and DK groups, which presented the lower surface roughness; DA and DP had the higher Ra values. The DA, DP and CT showed the lowest surface gloss values, and the reflectance was significantly different from those observed for DK and DG groups. SEM analysis revealed the smoothest surface for DK group, followed by DG and CT groups; DA and DP groups exhibited variable degrees of surface irregularities. No significant differences were observed among groups for the biaxial flexural strength. The polishing protocol used in DK group can be a good alternative for chairside finishing of adjusted pressable fluorapatite glass ceramic surfaces.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1409
Author(s):  
You-Jung Kang ◽  
Yooseok Shin ◽  
Jee-Hwan Kim

This study evaluated the shear bond strength (SBS) and biaxial flexural strength (BFS) of resin cements according to the surface treatment method using low-temperature hot etching with hydrofluoric acid (HF) on a yttrium-stabilized tetragonal zirconia (Y-TZP) surface; 96 discs and 72 cubes for BFS and SBS tests for Y-TZP were randomly divided into four groups of BFS and three groups of SBS. Specimens were subjected to the following surface treatments: (1) no treatment (C), (2) air abrasion with 50 μm Al2O3 particles (A), (3) hot etching with HF at 100 °C for 10 min (E), and (4) air abrasion + hot etching (AE). After treatments, the specimens were coated with primer, and resin cement was applied with molds. The specimens were evaluated for roughness (Ra) via scanning electron microscopy and x-ray diffraction, and the data were analyzed by an analysis of variance (ANOVA) and Kruskal–Wallis tests. Group E produced significantly higher SBS compared to group A and AE before and after thermocycling. The BFSs of all groups showed no significant differences before thermocycling; however, after thermocycling, C and E treatment groups were significantly higher compared to group A and AE. All groups showed phase transformation. Group E was observed lower monoclinic phase transformation compared to other groups.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3694
Author(s):  
Hiroto Nakai ◽  
Masanao Inokoshi ◽  
Kosuke Nozaki ◽  
Keiji Komatsu ◽  
Shingo Kamijo ◽  
...  

We aimed to assess the crystallography, microstructure and flexural strength of zirconia-based ceramics made by stereolithography (SLA). Two additively manufactured 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP: LithaCon 3Y 230, Lithoz; 3D Mix zirconia, 3DCeram Sinto) and one alumina-toughened zirconia (ATZ: 3D Mix ATZ, 3DCeram Sinto) were compared to subtractively manufactured 3Y-TZP (control: LAVA Plus, 3M Oral Care). Crystallographic analysis was conducted by X-ray diffraction. Top surfaces and cross-sections of the subsurface microstructure were characterized using scanning electron microscopy (SEM). Biaxial flexural strength was statistically compared using Weibull analysis. The additively and subtractively manufactured zirconia grades revealed a similar phase composition. The residual porosity of the SLA 3Y-TZPs and ATZ was comparable to that of subtractively manufactured 3Y-TZP. Weibull analysis revealed that the additively manufactured LithaCon 3Y 230 (Lithoz) had a significantly lower biaxial flexural strength than 3D Mix ATZ (3D Ceram Sinto). The biaxial flexural strength of the subtractively manufactured LAVA Plus (3M Oral Care) was in between those of the additively manufactured 3Y-TZPs, with the additively manufactured ATZ significantly outperforming the subtractively manufactured 3Y-TZP. Additively manufactured 3Y-TZP showed comparable crystallography, microstructure and flexural strength as the subtractively manufactured zirconia, thus potentially being a good option for dental implants.


Sign in / Sign up

Export Citation Format

Share Document