Recrystallization Texture of a Copper Electrodeposit with the and Duplex Orientation

2002 ◽  
Vol 408-412 ◽  
pp. 895-900 ◽  
Author(s):  
Soo Young Kang ◽  
Dong Nyung Lee
2005 ◽  
Vol 495-497 ◽  
pp. 1461-1466
Author(s):  
Kazuyoshi Sekine ◽  
Zheng Rong Zhang

Texture transition in silver introduced by the addition of 10 at% Pd alloying element was analyzed in this study. Experimental results show that the dependence of rolling texture on rolling reduction in thickness rather than on rolling temperature has been mostly detected, and the recrystallization texture transition process in pure silver is so strongly influenced by the addition of alloying element palladium that the final stable state of recrystallization texture has been changed from Brass {011}<211> orientation to Copper {112}<111> orientation. The single cube {001}<100> recrystallization texture in warm rolled silver, Brass {011}<211> recrystallization texture in room-temperature rolled silver, and Copper {112}<111> recrystallization texture in room-temperature rolled or warm rolled Ag-10 at% Pd alloy have been successfully developed for the fabrication of metallic substrates suitable for high-temperature superconducting tapes.


1996 ◽  
Vol 204-206 ◽  
pp. 539-544 ◽  
Author(s):  
T. Kubota ◽  
K. Kuroki ◽  
Yohtaro Matsuo ◽  
N. Takahashi

2016 ◽  
Vol 121 ◽  
pp. 149-156
Author(s):  
X.P. Chen ◽  
H.F. Sun ◽  
D. Chen ◽  
L.X. Wang ◽  
Q. Liu

2003 ◽  
Vol 51 (11) ◽  
pp. 3037-3051 ◽  
Author(s):  
Jong-Tae Park ◽  
Jerzy A Szpunar

2005 ◽  
Vol 495-497 ◽  
pp. 651-656 ◽  
Author(s):  
Y.B. Chun ◽  
S. Lee Semiatin ◽  
Sun Keun Hwang

The evolution of microstructure and texture during cold rolling and recrystallization annealing of commercial-purity Ti (CP-Ti) was established. Cold rolling to 40% reduction activated mechanical twinning- mostly > 3 2 11 < } 2 2 11 { compressive twins and > 1 1 10 < } 2 1 10 { tensile twins. The formation of twins resulted in an inhomogeneous microstructure, in which only the localized regions containing twins were refined and the regions deformed by slip remained coarse. The twinned grains, containing high stored energy and numerous high-angle grain boundaries, became the preferential sites of nucleation during subsequent recrystallization. During recrystallization heat treatment at 500~700°C, the cold-rolling texture (ϕ1=0°, Φ=35°, ϕ2=30°) diminished in intensity, whereas a recrystallization texture component (ϕ1=15°, Φ=35°, ϕ2=35°) appeared. The recrystallization heat treatment temperature affected the rate of recrystallization but not the texture characteristics per se. During the subsequent grain growth stage, the recrystallization texture component increased. This behavior was attributed to the growth of larger-than-average grains of this particular crystal orientation.The evolution of microstructure and texture during cold rolling and recrystallization annealing of commercial-purity Ti (CP-Ti) was established. Cold rolling to 40% reduction activated mechanical twinning- mostly > 3 2 11 < } 2 2 11 { compressive twins and > 1 1 10 < } 2 1 10 { tensile twins. The formation of twins resulted in an inhomogeneous microstructure, in which only the localized regions containing twins were refined and the regions deformed by slip remained coarse. The twinned grains, containing high stored energy and numerous high-angle grain boundaries, became the preferential sites of nucleation during subsequent recrystallization. During recrystallization heat treatment at 500~700°C, the cold-rolling texture (ϕ1=0°, Φ=35°, ϕ2=30°) diminished in intensity, whereas a recrystallization texture component (ϕ1=15°, Φ=35°, ϕ2=35°) appeared. The recrystallization heat treatment temperature affected the rate of recrystallization but not the texture characteristics per se. During the subsequent grain growth stage, the recrystallization texture component increased. This behavior was attributed to the growth of larger-than-average grains of this particular crystal orientation.


Sign in / Sign up

Export Citation Format

Share Document