Residual Stress in High-Pressure Water Jet Assisted Turning of Austenitic Stainless Steel

2006 ◽  
Vol 524-525 ◽  
pp. 581-586 ◽  
Author(s):  
Malek Habak ◽  
Jean Lu Lebrun ◽  
Stefan Waldmann ◽  
Patrick Robert ◽  
Cyril Fischer

In this paper, the effect of a high pressure water jet, directed into the tool chip interface, on surface residual stresses and chip shape, in face turning of AISI 316L stainless steel has been investigated. Tests have been carried out with a standard cutting tool. This tool is not specifically meant for the machining of this type of material. The cutting speeds used were 80 m/min and 150 m/min, with a constant feed rate of 0.1 mm/rev and a constant cutting depth of 0.1 mm. Three jet pressures were used: 20, 50 and 80 MPa. Residual stress profiles have been analysed using the X-ray diffraction method in both longitudinal and transversal directions. The results show that by using a high pressure jet directed into the tool-chip interface, it is possible to create a well fragmented chip in contrast to the continuous chip formed using dry turning. It is also possible to control the chip shape and increase tool life. When the jet pressure is increased the residual stress at the surface decreases however it is increased by an increase in cutting speed. It can be concluded that surface residual stresses can be reduced by the introduction of a high pressure water jet. A reduction in the residual stress value by about 20 to 40 % can be observed when using high pressure water jet assisted turning compared to dry turning. Also, it has been observed that the jet pressure does not have a great influence on the depth affected by residual stress and by hardening.

2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Zeng-qiang Yang ◽  
Chang Liu ◽  
Feng-shuo Li ◽  
Lin-ming Dou ◽  
Gang-wei Li ◽  
...  

1988 ◽  
Vol 4 (4) ◽  
pp. 340-343 ◽  
Author(s):  
John H. Posselius ◽  
Jr.. Glenn T. Conklin

2011 ◽  
Vol 462-463 ◽  
pp. 774-779
Author(s):  
Hu Si ◽  
Xiao Hong Li ◽  
Yan Ming Xie

The high pressure waterjet is widely applied for mine industry, mechanical manufacture, environmental engineering, and medicine field due to its particular characteristic. Recently, the application of high pressure waterjet for gas drainage in mine has been receiving increasing attention with the development of exploitative technology. The micro-damage mechanism of coal under high pressure water jet is key to drain gas effectively. Based on damage mechanics and rock dynamics, the paper analyzed the micro-structure deformation and damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model. Further, on the assumption of that rock was homogeneous and isotropic, a computational model was established based on the Arbitrary Lagrangian Eulerian (ALE) fluid-solid coupling penalty function method. The rock damage under high pressure water jet was simulated by the dynamic contact method. The results showed that the damage and breakage of ruck was mainly attributed to impacting effect and was characterized by local effect, and the evolvement of rock breakage went through three stages and the figure of rock breakage trended a funnel. On the whole, numerical results agreed with experimental results.


2015 ◽  
Vol 126 ◽  
pp. 295-299 ◽  
Author(s):  
Hailong Chen ◽  
Zhaomin Li ◽  
Zhihan Gao ◽  
Yuanyuan Sun

Sign in / Sign up

Export Citation Format

Share Document