Residual Stress and Microstructure in the Rail/Wheel Contact Zone of a Worn Railway Wheel

2006 ◽  
Vol 524-525 ◽  
pp. 911-916 ◽  
Author(s):  
Eric Wild ◽  
Walter Reimers

The rail/ wheel contact comprises interactions of thermal and mechanical loadings which lead to microstructural changes in the wheel. These were investigated on a wheel from a regional train using metallographic examinations, X-ray diffraction for phase and residual stress analyses. The results show that the microstructural alterations, the carbon content and the residual stress distribution depend on the loading profile of the wheel. The formation of two different martensites (tetragonal and cubic martensite) on a wheel surface could be detected at different positions. The martensites are characterized by high hardness values, increased carbon contents in the lattice and an increased level of compressive residual stresses. Detailed structural analyses of the martensites which were formed under locally different loading and time conditions gave evidence for different structural evolutions.

2006 ◽  
Vol 977 ◽  
Author(s):  
Gang Chen ◽  
Dileep Singh ◽  
Osman Eryilmaz ◽  
Ali Erdemir ◽  
Jules Routbort ◽  
...  

AbstractWe have developed a synchrotron-based x-ray microdiffraction technique for measuring depth-resolved residual stress distribution in nanocrystalline films with submicron resolution [1]. In this study, we further refined this technique and applied it to low-friction and high-hardness Cu-doped MoN films. These magnetron sputtered nanocomposites films consist of MoN, Mo2N, and Cu phases, whose ratio depends on Cu concentration. By using the microdiffraction technique, we discovered that both the deviatoric and the hydrostatic components of the residual stresses depend on the film depth (Fig.1). The former indicates depth-dependent distribution of biaxial stresses, while the latter implies depth-dependent defect distribution, which also depends on Cu concentration. Thermal annealing of the nanocomposite film partially relives the stress, significantly reduces the lattice spacing, and eliminates the defect gradients. These results suggest that interstitial N may play an important role in the lattice expansion and the defect gradients formed during the non-equilibrium sputtering process. Our study provides fresh insights into understanding the structure-property relations in the magnetron sputtered MoN:Cu nanocomposites films.


1995 ◽  
Vol 39 ◽  
pp. 331-338
Author(s):  
Yoshihisa Sakaida ◽  
Keisuke Tanaka ◽  
Shintaro Harada

A new method of X-ray stress measurement was proposed to estimate non-destructively the steep residual stress distribution in the surface layer of ground Si3N4. We assumed an exponential decrement of the residual stress near the ground surface, and derived a formula for the lattice strain as a function of sin2Ψ. In the experiments, the diffraction angles were measured on the ground surface for a widest possible range of sin2ѱ using an Ω-goniometer. In order to measure the diffraction angle at very high sin η values, a scintillation counter was located on the -η side and an incident X-ray beam impinged on the ground surface with a very low angle from the +η side using the glancing incidence X-ray diffraction technique. A strong non-linearity was found in the 20-sin2ѱ diagrams especially at very high ѱ -angles. From the analysis of non-linearity, the stress distribution in the surface layer was determined. Tine residual stress took the maximum compression of 2 GPa at a depth of about 0.5 μm from the surface, and then diminished to zero at about 25 μm in depth. In the close vicinity of the ground surface, the compressive residual stress was relieved because of both the surface roughness and microcracking induced during the grinding process.


2019 ◽  
Vol 35 (11) ◽  
pp. 2470-2476 ◽  
Author(s):  
Chun Li ◽  
Xiaoqing Si ◽  
Jian Cao ◽  
Junlei Qi ◽  
Zhibo Dong ◽  
...  

2003 ◽  
Vol 43 (2) ◽  
pp. 141-147 ◽  
Author(s):  
S. A. Martinez ◽  
S. Sathish ◽  
M. P. Blodgett ◽  
M. J. Shepard

Sign in / Sign up

Export Citation Format

Share Document