thread rolling
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 23)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
L. Giorleo ◽  
M. Cartapani

AbstractIn this paper, a numerical analysis of the cold thread-rolling process using flat dies is presented as a function of the die geometry design. Five die geometries with different threading and finishing ratios were modelled to induce different screw deformation rates. An analytical method was proposed by the authors to design die geometries as a function of screw roll rotation. Screw geometry accuracy, induced stress, and die wear were selected to compare the tested geometries. The results showed that three screw rotations in the threading step were sufficient to guarantee good geometry accuracy. Moreover, the results highlighted that die wear is the most affected parameter among all the tested geometries. Finally, a new solution was proposed by the authors to obtain uniform wear and reduce the die length.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract Mueller Brass C38500 is a wrought copper-zinc-lead alloy (leaded brass) that is suitable for high-speed screw machining applications and moderate thread rolling. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: Cu-924. Producer or source: Mueller Brass Company.


2021 ◽  
Vol 1 ◽  
pp. 3141-3148
Author(s):  
Tim Katzwinkel ◽  
Esanula Mohammad ◽  
Philipp Silberkuhl ◽  
Manuel Löwer

AbstractWithin this paper, a new method for the quality refinement of external metric standard threads on 3Dprinted bolts is presented. The repair method is based on the application of thread rolling technology, which is applied in terms of cold forming after the regular printing has been finished. The explorative study proves, that the investigated technology has a good potential to solve known precision issues in FDM 3D printing regarding the required accuracy for function fulfilling standardized threads. The application of thread rolling can be done manually and with minimal tool effort, which makes the technology particularly attractive for low cost applications.


Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 247
Author(s):  
Amin Soltani ◽  
Brendan C. O’Kelly

Given its apparent limitations, various attempts have been made to develop alternative testing approaches to the standardized rolling-thread plastic limit (PLRT) method (for fine-grained soils), targeting higher degrees of repeatability and reproducibility. Among these, device-rolling techniques, including the method described in ASTM D4318/AASHTO T90 standards, based on original work by Bobrowski and Griekspoor (BG) and which follows the same basic principles as the standard thread-rolling (by hand) test, have been highly underrated by some researchers. To better understand the true potentials and/or limitations of the BG method for soil plasticity determination (i.e., PLBG), this paper presents a critical reappraisal of the PLRT–PLBG relationship using a comprehensive statistical analysis performed on a large and diverse database of 60 PLRT–PLBG test pairs. It is demonstrated that for a given fine-grained soil, the BG and RT methods produce essentially similar PL values. The 95% lower and upper (water content) statistical agreement limits between PLBG and PLRT were, respectively, obtained as −5.03% and +4.51%, and both deemed “statistically insignificant” when compared to the inductively-defined reference limit of ±8% (i.e., the highest possible difference in PLRT based on its repeatability, as reported in the literature). Furthermore, the likelihoods of PLBG underestimating and overestimating PLRT were 50% and 40%, respectively; debunking the notion presented by some researchers that the BG method generally tends to greatly underestimate PLRT. It is also shown that the degree of underestimation/overestimation does not systematically change with changes in basic soil properties; suggesting that the differences between PLBG and PLRT are most likely random in nature. Compared to PLRT, the likelihood of achieving consistent soil classifications employing PLBG (along with the liquid limit) was shown to be 98%, with the identified discrepancies being cases that plot relatively close to the A-Line. As such, PLBG can be used with confidence for soil classification purposes.


Geotechnics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 59-75
Author(s):  
Brendan C. O’Kelly

Among the most commonly specified tests in the geotechnical engineering industry, the liquid limit and plastic limit tests are principally used for (i) deducing useful design parameter values from existing correlations with these consistency limits and (ii) for classifying fine-grained soils, typically employing the Casagrande-style plasticity chart. This updated state-of-the-art review paper gives a comprehensive presentation of salient latest research and understanding of soil consistency limits determinations/measurement, elaborating concisely on the many standardized and proposed experimental testing approaches, their various fundamental aspects and possibly pitfalls, as well as some very recent alternative proposals for consistency limits determinations. Specific attention is given to fall cone testing methods advocated (but totally unsuitable) for plastic limit determination; that is, the water content at the plastic–brittle transition point, as defined using the hand rolling of threads method. A framework (utilizing strength-based fall cone-derived parameters) appropriate for correlating shear strength variation with water content over the conventional plastic range is presented. This paper then describes two new fine-grained soil classification system advancements (charts) that do not rely on the thread-rolling plastic limit test, known to have high operator variability, and concludes by discussing alternative and emerging proposals for consistency limits determinations and fine-grained soil classification.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 503
Author(s):  
Yuheng Zhang ◽  
Zhiqing Hu ◽  
Liming Guo

In order to study a new thread rolling forming process from a microscopic perspective, a polycrystalline model was established, based on the crystal plasticity finite element method (CPFEM) and Voronoi polyhedron theory. The fluidity of metals was studied to explain the reason for the concave center. The simulation results show that the strain curve of the representative element can more truly reflect the deformation behavior of the material. The grain orientations after deformation are distributed near the initial orientation. The evolution of each slip system is determined by the initial grain orientations and grain locations. The pole figures obtained from the experiment show high consistency with the pole figures obtained by simulation, which verifies the accuracy of the texture prediction by CPFEM. The experimental results show that thread rolling is more uniform in deformation than ordinary rolling.


Alloy Digest ◽  
2021 ◽  
Vol 70 (3) ◽  

Abstract Mueller Brass C36000 is a wrought, Cu-Zn-Pb alloy (leaded brass) that is suitable for high-speed screw machining applications and moderate thread rolling. On the basis of strength alone, it can safely be substituted for leaded steel in many applications. UNS C36000 is the most important commercial copper alloy, surpassing all but copper itself in terms of annual consumption. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: Cu-918. Producer or source: Mueller Brass Company.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 542
Author(s):  
Likang Deng ◽  
Jun Li

Sugar cane bagasse and corn stalks are rich in lignocellulose, which can be degraded into monosaccharides through enzymatic hydrolysis. Appropriate pretreatment methods can effectively improve the efficiency of lignocellulose enzymatic hydrolysis. To enhance the efficiency of enzymatic hydrolysis, thread rolling pretreatment as a physical pretreatment was applied in this study. The influence of raw material meshes size after pretreatment was also taken as the research target. Specific surface area analysis, Scanning electron microscope (SEM), X-rays diffraction (XRD), and Fourier transform infrared (FT-IR) were used for characterizations. The results showed that, the total monosaccharide recovery rates of the raw materials, 20–40 mesh, 40–60 mesh, and 60–80 mesh enzymolysis substrates were 17.6%, 34.58%, 37.94%, and 50.69%, respectively. The sample after pretreatment showed a better recovery of monosaccharide than that of the raw material. Moreover, the enzymolysis substrates with a larger mesh exhibited a higher recovery of monosaccharide than that of the enzymolysis substrates with smaller meshes. This indicated that thread rolling pretreatment can effectively improve the efficiency of enzymatic hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document