Research on High Speed Face Milling Cutter Based on the Model of Stress Field

2006 ◽  
Vol 532-533 ◽  
pp. 341-344 ◽  
Author(s):  
Min Li Zheng ◽  
Bin Jiang ◽  
Bin Hu Chen ◽  
Yong Jun Sun

According to the characteristics of high speed face milling process, the models of the stress field for high speed face milling cutter with two sorts of structure are proposed and established. By means of the finite element analysis of the stress field for high speed face milling cutters, the law of influence of the cutter’s structure, the cutter’s subassemblies and the fixing rake of inserts on the stress field of cutter is acquired under the action of high rotate speed. In this foundation, the model reconstruction and the stress field analysis of the cutter are completed, and the model of evaluation for dynamic cutting performance of high speed face milling cutter is established. The results of high speed face milling experiment and frequency spectrum analysis of dynamic cutting force of the cutter indicate that high speed face milling cutter with the fixing rake of zero degree and less subassemblies takes on better dynamic high speed cutting performance.

2008 ◽  
Vol 375-376 ◽  
pp. 663-666
Author(s):  
Min Li Zheng ◽  
Bin Jiang ◽  
Jia Liu ◽  
Chong Yu He

According to the characteristics of high speed face milling process, the models of dynamic cutting forces and frequency spectrum were established. By means of frequency spectrum analysis for dynamic cutting forces of high speed face milling cutter, the law of influence of cutter’s structure and parameters on dynamic cutting performance of cutter was acquired, high speed face milling cutter for machining aluminum alloy was developed, and evaluation for dynamic cutting performance of cutter was processed based on experiment. The results indicate that more teeth of cutter and greater cutting contact angle can make the energy more dispersible, higher cutting speed and greater rake of cutter can depress dynamic cutting forces, and improve effectively dynamic cutting performance of cutter. High speed face milling cutter with five teeth takes on better dynamic high speed cutting performance for machining aluminum alloy, as cutting contact angle exceeds ninety degrees but it is less than one hundred eighty degrees, and cutting speed exceeds 2260m/min.


2008 ◽  
Vol 392-394 ◽  
pp. 793-797
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Fang Xu

Based on analyses of cutting heat and temperature in high speed milling, to construct a model of critical cutting speed for high speed milling cutter, find out influencing factor of critical cutting speed, and put forward optimization method of high speed milling cutter based on critical cutting speed. The results indicate that chip conducts a majority of cutting heat along with increase of cutting speed, feed speed and the rake of cutter. Cutting heat which workpiece conducts gradually diminishes when heat source accelerates. When cutting performance of cutter satisfies requirements of high speed milling, the proportion of cutting heat which workpiece conducts approaches its maximum as cutting speed comes to critical cutting speed. To optimize high speed face milling cutter for machining aluminum alloy according to critical cutting speed, the cutter takes on better cutting performance when cutting speed is 2040m/min~2350m/min.


2008 ◽  
Vol 375-376 ◽  
pp. 593-597
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Fang Xu ◽  
Ya Guang Li

Based on loads analysis and failure analysis for high speed face milling cutter with indexable inserts, the failure criterion of cutter was propounded, and the finite element model of cutter was established. By means of modal analysis and stress field analysis, the law of influence of the structure and elements of cutter on the safety of cutter was acquired, high speed face milling cutter for machining aluminum alloy was developed. According to ISO15641 international standard, safety prediction of cutter and experiments were completed. The results indicate that rigidity failure rotational speed is higher strength failure rotational speed of high speed face milling cutter, connection strength between cutter body and screw bolt affects directly the safety rotational speed of cutter. High speed face milling cutter for machining aluminum alloy possesses higher safety and better dynamic milling performance as cutting speed is less than 2820m/min.


2012 ◽  
Vol 468-471 ◽  
pp. 1322-1325
Author(s):  
Yong Liang Zhang ◽  
Rui Jie Wang ◽  
Hong Bin Liu ◽  
Mao Hua Du ◽  
Xiao Dong Xu

The influence of negative chamfers of PCBN milling cutters on cutting process of high speed cutting is studied based on finite element analysis. The milling speed, axial cutting depth and feed speed are all set fixed, while the negative chamfer angle varies. Cutting tool stress, deformation force, and cutting temperature are obtained for cutting process under different negative chamfering Angle,thus providing basis for the selection of tool parameters in practical production.


2015 ◽  
Vol 764-765 ◽  
pp. 289-293
Author(s):  
Yi Chang Wu ◽  
Han Ting Hsu

This paper presents the magnetostatic field analysis of a coaxial magnetic gear device proposed by Atallah and Howe. The structural configuration and speed reduction ratio of this magnetic gear device are introduced. The 2-dimensional finite-element analysis (2-D FEA), conducted by applying commercial FEA software Ansoft/Maxwell, is performed to evaluate the magnetostatic field distribution, especially for the magnetic flux densities within the outer air-gap. Once the number of steel pole-pieces equals the sum of the pole-pair numbers of the high-speed rotor and the low-speed rotor, the coaxial magnetic gear device possesses higher magnetic flux densities, thereby generating greater transmitted torque.


2010 ◽  
Vol 129-131 ◽  
pp. 256-260
Author(s):  
Yi Shu Hao ◽  
Chuang Hai ◽  
Xin Xing Zhu

Treating high speed milling theory as the guidance, this paper researched high speed milling process of bracket part based on UG NX. Combined with the structural features of bracket part, three dimensional model is built by UG NX CAD and machining processes are worked out after analysis. UG CAM module was applied to fabricate tool paths. At last, finite element analysis method is introduced to study the processing deformation by UG NX NASTRAN module, based on which measures to restrain processing deformations is advanced and processing sequences are optimized.


2013 ◽  
Vol 683 ◽  
pp. 556-559
Author(s):  
Bin Bin Jiao ◽  
Fu Sheng Yu ◽  
Yun Jiang Li ◽  
Rong Lu Zhang ◽  
Gui Lin Du ◽  
...  

In order to study the distribution of the stress field in the high-speed intermittent cutting process, finite element model of high-speed intermittent cutting is established. Exponential material model of the constitutive equation and adaptive grid technology are applied in the finite element analysis software AdvantEdge. The material processing is simulated under certain cutting conditions with FEM ( Finite Element Method ) and the distribution of cutting force, stress field, and temperature field are received. A periodic variation to the cutting force and temperature is showed in the simulation of high-speed intermittent cutting. Highest value of the milling temperature appears in front contacting area of the knife -the chip.and maximum stress occurs at the tip of tool or the vicinity of the main cutting edge. The analysis of stress and strain fields in-depth is of great significance to improve tool design and durability of tool.


2020 ◽  
Vol 46 (2) ◽  
pp. 1621-1630 ◽  
Author(s):  
Jianfei Sun ◽  
Shun Huang ◽  
Haitao Ding ◽  
Wuyi Chen

Sign in / Sign up

Export Citation Format

Share Document