Superplastic Properties and Superplastic Forming/Diffusion Bonding of γ-TiAl+α2-Ti3Al Sheet Materials

2007 ◽  
Vol 551-552 ◽  
pp. 441-446 ◽  
Author(s):  
Rinat V. Safiullin ◽  
Renat M. Imayev ◽  
V.M. Imayev ◽  
Werner Beck ◽  
F.H. Froes ◽  
...  

The as-cast and hot worked microstructures of the newly developed β-solidifying ingot-metallurgy Ti-45Al-X (Nb,Mo,B) alloy and its superplastic properties in the hot worked condition have been studied. The obtained experimental findings were used for research of superplastic forming and diffusion bonding of sheet products, which were cut out of hot worked preform by spark cutting. It was shown that superplastic forming might be successfully applied to the obtained fine-grained sheet materials. Relatively low bonding temperatures and pressures were found to be sufficient to achieve sound joints in the sheet material.

2007 ◽  
Vol 551-552 ◽  
pp. 211-217 ◽  
Author(s):  
Jean Jacques Blandin

Superplastic forming (SPF) of magnesium alloys has received increasing attention in the recent past. The aim of this presentation is to review recent works dealing with SPF of Mg alloys with a three-fold objective: i. How to produce fine or ultra fine grained (UFG) microstructures? ii. Are there specifities in superplastic deformation mechanisms? iii. How SPF Mg alloys resist to cavitation? Deformation mechanisms as well as damage variations in the superplastic regime will be preferentially discussed in relation with grain size, content in intermetallic particles and diffusion kinetics. For the sake of illustration, some results concerning the superplastic behaviour of UFG magnesium alloys produced by severe plastic deformation will be presented since such microstructures exhibit particularly attractive superplastic properties at quite low temperatures.


2010 ◽  
Vol 19 (4) ◽  
pp. 527-532 ◽  
Author(s):  
Alan Jocelyn ◽  
Aravinda Kar ◽  
Alexander Fanourakis ◽  
Terence Flower ◽  
Mike Ackerman ◽  
...  

1994 ◽  
Vol 170-172 ◽  
pp. 737-742 ◽  
Author(s):  
Oscar A. Kaibyshev ◽  
Ramil Ya. Lutfullin ◽  
Rinat V. Safiullin ◽  
S.N. Fatkullin

1999 ◽  
Vol 601 ◽  
Author(s):  
A.P. Brown ◽  
R Brydson ◽  
C. Hammond ◽  
A. Wisbey ◽  
T.M.T. Godfrey

AbstractThe superplastic forming (SPF) of titanium alloys is an established technology. A reduction in grain size from that of the typical sheet materials would lead to enhanced SPF properties and hence a reduction in production cycle times. This study describes the microstructural development and superplastic behaviour of fine-grained Ti-6%Al-4%V alloys. Ball-milling Ti-6%Al-4%V powder produces a nanocrystalline material; however on consolidation by hot isostatic pressing rapid grain growth occurs. Addition of boron powder during milling leads to boride precipitates in the matrix of the consolidated alloy. The precipitates are dispersed inhomogeneously, resulting in localized grain refinement. Superplastic testing revealed cavitation formation but in comparison to conventional sheet material, large elongations were achieved at relatively high strain rates.


1984 ◽  
Vol 21 (1) ◽  
pp. 61-64 ◽  
Author(s):  
W. T. Chandler ◽  
A. K. Ghosh ◽  
W. M. Mahoney

Author(s):  
I E Bottomley

The diffusion bonding (DB)/superplastic forming (SPF) manufacturing process, for titanium 6A1/4V material, has been developed within British Aerospace for the manufacture of military aircraft components. Diffusion bonding of titanium alloys offers the potential for parent metal joint strengths, and when combined with SPF, complex aircraft components offering significant cost and weight savings can be manufactured. This paper briefly describes the DB/SPF development programme and the manufacture of the Tornado heat exchanger ducts and European Fighter Aircraft (EFA) foreplane components.


2010 ◽  
Vol 433 ◽  
pp. 119-124 ◽  
Author(s):  
Paul Wilson ◽  
Christopher Couzins-Short ◽  
Howard Chesterton ◽  
Alan Jocelyn

Superplastic Forming and Diffusion Bonding (SPF/DB) have provided some of the lightest, strongest, corrosion resistant, elegant and complex structures ever produced. Thus “At Boeing, SPF is now considered as a baseline design option for many large assemblies” (Dan Sanders, 2000). However, in an ever increasingly cost conscience world, will the process flourish or decline? Cost is the element most scrutinised by society, and is often considered more important than achieving a required specification or delivery of a project on time. In this paper an analysis of the global value of SPF and SPF/DB products will be provided by industrial sector and material type. The cost of the current technology, such as capital plant, consumable materials and labour overheads, will be compared to the current price of SPF products and the degree of ‘market pressure’ to reduce such costs will be assessed. Such pressures may arise from potential threats from competing technologies, fuel costs or environmental considerations. However, if lowering the ‘carbon footprint’ of the process, and its cost, could be achieved, together with the production of components and structures of improved weight to strength ratio, SPF technology could be elevated to the first, and principal, choice of designers worldwide.


Sign in / Sign up

Export Citation Format

Share Document