The Influence of High-Energy Ball Milling Parameters on the Traditional W-Type Ba-Hexaferrite Properties

2008 ◽  
Vol 589 ◽  
pp. 397-402
Author(s):  
Gyula Kakuk ◽  
Ágnes Csanády ◽  
István E. Sajó ◽  
Katalin Papp ◽  
Péter Németh ◽  
...  

The main task of our work was to study the influence of high energy ball milling on the process of W-type hexaferrite material production and to compare the structural, morphological and magnetic features of the different manufacturing ways. The products are analyzed mainly by XRD, SEM and TEM methods. It was shown that high energy ball milling can be used to enhance the synthesis of W-type Ba-hexaferrite due to the much smaller crystallite sizes and their larger surfaces that are produced by the milling process and due to the activation of these surfaces.

2010 ◽  
Vol 660-661 ◽  
pp. 329-334 ◽  
Author(s):  
Railson Bolsoni Falcão ◽  
Edgar Djalma Campos Carneiro Dammann ◽  
Cláudio José da Rocha ◽  
Ricardo Mendes Leal Neto

This work reports the efforts to obtain TiFe intermetallic compound by high-energy ball milling of Ti and Fe powder mixtures. This process route has been used to provide a better hydrogen intake in this compound. Milling was carried out in a SPEX mill at different times. Strong adherence of material at the vial walls was seen to be the main problem at milling times higher than 1 hour. Attempts to solve this problem were accomplished by adding different process control agents, like ethanol, stearic acid, low density polyethylene, benzene and cyclohexane at variable quantities and keeping constant other milling parameters like ball to powder ration and balls size. Better results were attained with benzene and cyclohexane, but with partial formation of TiFe compound even after a heat treatment (annealing) of the milled samples.


2006 ◽  
Vol 54 (1) ◽  
pp. 93-97 ◽  
Author(s):  
J.L. Li ◽  
L.J. Wang ◽  
G.Z. Bai ◽  
W. Jiang

2001 ◽  
Vol 16 (6) ◽  
pp. 1636-1643 ◽  
Author(s):  
L. B. Kong ◽  
J. Ma ◽  
T. S. Zhang ◽  
W. Zhu ◽  
O. K. Tan

Partially reacted mixtures of Pb(ZrxTi1−x)O3 and its corresponding starting oxide components were obtained by a high-energy ball milling process. The partially reacted powders were characterized by x-ray diffraction and scanning electron microscopy techniques. The sintering behavior of the milled mixtures has demonstrated a distinct volumetric expansion before the densification of the samples, which clearly shows the occurrence of a reactive sintering process of the partially reacted powders. Such process requires a lower densification temperature as compared with the PZT powders produced by the conventional solid-state reaction process. PZT ceramics were found to form directly from the partially reacted powders sintered at 900–1200 °C. The dielectric and ferroelectric properties of the PZT ceramics as a function of sintering temperature and milling time were also studied and discussed.


Sign in / Sign up

Export Citation Format

Share Document