Study on particle size and X-ray peak area ratios in high energy ball milling and optimization of the milling parameters using response surface method

Measurement ◽  
2017 ◽  
Vol 112 ◽  
pp. 53-60 ◽  
Author(s):  
Fatih Erdemir
2019 ◽  
Vol 13 (2) ◽  
pp. 210-217
Author(s):  
Milica Vucinic-Vasic ◽  
Bratislav Antic ◽  
Marko Boskovic ◽  
Aleksandar Antic ◽  
Jovan Blanusa

Nanocomposites (HAp/iron oxide), made of hydroxyapatite (HAp) and ferrimagnetic iron oxide, were synthesized by high-energy ball milling a mixture consisting of iron oxide nanoparticles and the starting materials used for the HAp synthesis: calcium hydrogen phosphate anhydrous (CaHPO4), and calcium hydroxide (Ca(OH)2). Two HAp/iron oxide samples with the magnetic phase content of 12 and 30 wt.% were prepared and their microstructure, morphology and magnetic properties were analysed by X-ray diffraction and transmission electron microscopy. Furthermore, the measurement of particle size distribution was performed by laser scattering, and temperature/field dependence on magnetization was determined. X-ray diffraction data confirmed the formation of two-phased samples (HAp and spinel iron oxide) without the presence of any other parasite phase. The shape of particles was nearly spherical in both samples, ranging from only a few to several tens of nanometres in diameter. These particles formed agglomerates with the most common value of the number-based particle size distribution of 380 and 310 nm for the sample with 12 and 30wt.% of iron oxide, respectively. Magnetization data showed that both HAp/iron oxide composites had superparamagnetic behaviour at room temperature.


2020 ◽  
Vol 9 (4) ◽  
pp. e175943067
Author(s):  
João Augusto Martins Almeida ◽  
Bruna Horta Bastos Kuffner ◽  
Gilbert Silva ◽  
Patrícia Capellato ◽  
Daniela Sachs

There are a class of material widely used in bone tissue repair. This material is calcium phosphate ceramics (CPCs)that can be used on two phases: α and β. However, β-TCP is more used in bone regeneration than α–TCP due to the biocompatible and bioactive properties.In the present work evaluate the influence of these two distinct processes to deagglomeration and the consequence in the particle size of the β-TCP obtained through solid-state reaction. Among all of the routes used in research and industry to reduce the particles size of different materials, the high energy ball milling is one of the most effective, due to the high rotation speed that this process achieves. The deagglomeration through agate mortar is considered a cheaper process when compared with the high energy ball milling. The characterization of both powders, deagglomerated in high energy ball milling and agate mortar, was realized through scanning electron microscopy, to analyze the powder morphology, and laser granulometry, to determine the size of the particles. Also, the forerunner powder was previously submitted to x-ray diffraction to confirm the formation of the β-TCP phase. The analysis through x-ray diffraction confirmed that the phase formed during the calcination process corresponded to the β-TCP. The results obtained after the deagglomeration processes indicated that the morphology was predominantly irregular for both powders. In relation to the granulometry, the deagglomeration performed through agate mortar showed to produce particles with smaller size (11,4µm e 0,9µm) and heterogeneous distribution, while the high energy ball milling process produced particles with larger size (11,4µm a 1,8µm) and higher homogeneity.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 728
Author(s):  
Roberto Gómez Batres ◽  
Zelma S. Guzmán Escobedo ◽  
Karime Carrera Gutiérrez ◽  
Irene Leal Berumen ◽  
Abel Hurtado Macias ◽  
...  

Air plasma spray technique (APS) is widely used in the biomedical industry for the development of HA-based biocoatings. The present study focuses on the influence of powder homogenization treatment by high-energy ball milling (HEBM) in developing a novel hydroxyapatite-barium titanate (HA/BT) composite coating deposited by APS; in order to compare the impact of the milling process, powders were homogenized by mechanical stirring homogenization (MSH) too. For the two-homogenization process, three weight percent ratios were studied; 10%, 30%, and 50% w/w of BT in the HA matrix. The phase and crystallite size were analyzed by X-ray diffraction patterns (XRD); the BT-phase distribution in the coating was analyzed by backscattered electron image (BSE) with a scanning electron microscope (SEM); the energy-dispersive X-ray spectroscopy (EDS) analysis was used to determinate the Ca/P molar ratio of the coatings, the degree of adhesion (bonding strength) of coatings was determinate by pull-out test according to ASTM C633, and finally the nanomechanical properties was determinate by nanoindentation. In the results, the HEBM powder processing shows better efficiency in phase distribution, being the 30% (w/w) of BT in HA matrix that promotes the best bonding strength performance and failure type conduct (cohesive-type), on the other hand HEBM powder treatment promotes a slightly greater crystal phase stability and crystal shrank conduct against MSH; the HEBM promotes a better behavior in the nanomechanical properties of (i) adhesive strength, (ii) cohesive/adhesive failure-type, (iii) stiffness, (iv) elastic modulus, and (v) hardness properties.


2010 ◽  
Vol 660-661 ◽  
pp. 329-334 ◽  
Author(s):  
Railson Bolsoni Falcão ◽  
Edgar Djalma Campos Carneiro Dammann ◽  
Cláudio José da Rocha ◽  
Ricardo Mendes Leal Neto

This work reports the efforts to obtain TiFe intermetallic compound by high-energy ball milling of Ti and Fe powder mixtures. This process route has been used to provide a better hydrogen intake in this compound. Milling was carried out in a SPEX mill at different times. Strong adherence of material at the vial walls was seen to be the main problem at milling times higher than 1 hour. Attempts to solve this problem were accomplished by adding different process control agents, like ethanol, stearic acid, low density polyethylene, benzene and cyclohexane at variable quantities and keeping constant other milling parameters like ball to powder ration and balls size. Better results were attained with benzene and cyclohexane, but with partial formation of TiFe compound even after a heat treatment (annealing) of the milled samples.


2011 ◽  
Vol 311-313 ◽  
pp. 1281-1285 ◽  
Author(s):  
Pei Hao Lin ◽  
Lei Wang ◽  
Shun Kang Pan ◽  
Hua Mei Wan

The NdFe magnetic absorbing materials were prepared by rapid solidification and high-energy ball milling method. The effect of high-energy ball milling on particle morphology, organizational structure and microwave absorbing properties of NdFe magnetic absorbing materials were analyzed with the aid of X-ray diffractometer, scanning electron microscope and vector network analysis. The results show that the Nd2Fe17 and α-Fe phase are refined, the particles become smaller and thinner; the span-ratio of the particles increases along with time during the process of high-energy ball milling; and meanwhile, the frequency of absorbing peak reduces. The absorbing bandwidth broadens as the increase of the time of ball milling, except that of 48h.The minimum reflectance of the powder decreases from -22dB to - 44dB under the circumstances that the time of high energy ball milling reaches 48h and the thickness of the microwave absorbing coating is 1.5mm. But it rebounds to about - 6dB when the time of ball milling reaches 72h.


2006 ◽  
Vol 168 (1-3) ◽  
pp. 1057-1063 ◽  
Author(s):  
Ligia E. Zamora ◽  
G. A. Perez Alcazar ◽  
J. M. Greneche ◽  
S. Suriñach

2014 ◽  
Vol 802 ◽  
pp. 125-129
Author(s):  
Heronilton Mendes de Lira ◽  
Pilar Rey Rodriguez ◽  
Oscar Olimpio de Araújo Filho ◽  
Cezar Henrique Gonzalez ◽  
Severino Leopoldino Urtiga Filho

High performance nanostructured light metals and alloys are very interesting for replacing conventional heavier materials in many industrial components. High Energy Ball Milling and Cryomilling are useful techniques to obtain nanocrystalline powders. In this work the effect of several milling conditions such as rotation speed, time, ball to powder ratio and temperature on the crystallite and particle size and morphology in pure aluminum are presented. X-Ray Diffraction, Laser Diffraction and Scanning Electron Microscopy are used. High energy ball milling at ambient and cryogenic temperature of Al powders rapidly leads to a nanometer size down to about 35 nm. High ball to powder ratio promotes both low crystallite and particle size. Small crystallite size like 18 nm and particle size as 4 μm were achieved in the most energetic conditions at ambient temperature. Isopropyl alcohol used as liquid media and protective atmosphere has a strong influence on the results depending on the milling temperature of Al.


1998 ◽  
Vol 524 ◽  
Author(s):  
J.-H. He ◽  
P. J. Schilling ◽  
E. Ma

ABSTRACTAn X-ray absorption beamline has been developed recently at the electron storage ring of the LSU Center for Advanced Microstructures and Devices. Using Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES), we have studied the local atomic environments in immiscible mixtures processed by high-energy ball milling, a mechanical alloying technique involving heavy deformation. By examining the local coordination and bond distances, it is concluded that atomic-level alloying can indeed be induced between Cu and Fe through milling at room temperature, forming substitutional fcc and bcc solid solutions. In addition to single-phase regions, a two-phase region consisting of fcc/bcc solutions has been found after milling at both room temperature and liquid nitrogen temperature. In contrast to the Cu-Fe system, solid solution formation is not detectable in milled Ag-Fe and Cu-Ta mixtures. This work demonstrates the power of synchrotron EXAFS/XANES experiments in monitoring nonequilibrium alloying on the atomic level. At the same time, the results provide direct experimental evidence of the capability as well as limitations of high-energy ball milling to form alloys in positive-heat-of-mixing systems.


Sign in / Sign up

Export Citation Format

Share Document