Magnesium Alloys as Biodegradable Implants

2009 ◽  
Vol 618-619 ◽  
pp. 83-86
Author(s):  
M. Bobby Kannan ◽  
R.K. Singh Raman

In this study, an attempt was made to enhance the degradation resistance of magnesium alloys for potential biodegradable implant applications through surface treatment. AZ91 magnesium alloy was taken as the test sample and was alkali-treated for two different periods of time and then the in vitro degradation behaviour of the alloy was studied using electrochemical impedance spectroscopy and polarization techniques in simulated body fluid. The study suggests that alkali-treatment reduces the degradation rate in AZ91 magnesium alloy.

2018 ◽  
Vol 1148 ◽  
pp. 122-127 ◽  
Author(s):  
Charu Singh ◽  
S.K. Tiwari ◽  
Raghuvir Singh

Magnesium alloys are excellent choice for automobile, aerospace, and computer components owing to their light weight, unique physical and mechanical properties. However, poor corrosion resistance has restricted their applications in aggressive environments. The surface coating is one of the viable options to reduce the susceptibility of magnesium alloys to corrosion. The present study focuses on the effect of heat treatment of AZ91 magnesium alloy, for different durations at 400 °C, prior to electroless Ni-P deposition on corrosion resistance. The microstructure and elemental analysis of the heat-treated specimens are performed using SEM and EDS techniques respectively. It is observed that the duration of heat treatment has a significant effect on the surface morphology and microstructure of the alloy. The precipitates in the cast alloy (enriched with Mg and Al) fragmented and the transformed into a new Al and Zn rich phase, after 12 h heat treatment. The dissolution of precipitates, however, observed on heating further to 24 h and exhibited relatively a lesser corrosion current density. The dense electroless Ni-P deposition is formed on the alloy heat treated for 24 h. The corrosion behavior of the single Ni-P layer on the heat treated (for 12 h) and untreated alloy show a marked deterioration, as investigated by the anodic polarization and electrochemical impedance spectroscopy (EIS) techniques. Relatively a better corrosion performance is seen for the double-layer Ni-P deposition. The duplex layer coatings on the as cast and heat treated for 24 h at 400 °C substrates showed an improved corrosion resistance compared to that on the 12 h heat treated substrate.


2011 ◽  
Vol 194-196 ◽  
pp. 1221-1224 ◽  
Author(s):  
Zhong Jun Wang ◽  
Yang Xu ◽  
Jing Zhu

The microstructures and corrosion resistance of AZ91 and AZ91+0.5 wt.% erbium (Er) magnesium alloys were studied, respectively. The results show that the Er addition in scrap AZ91 magnesium alloy can improve the corrosion resistance, markedly. The discontinuous precipitation phase (DPP) for Mg17Al12was retarded and the amount of DPP was decreased by 41% due to the formation of Al8ErMn4phase during solidification. The amount of continuous precipitation phase (CPP) in grains was decreased by 8% because of the formation of Al7ErMn5phase during solidification.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1078-1082 ◽  
Author(s):  
Yang Yang Lv ◽  
Ling Feng Zhang

Magnesium alloy as a green material in the 21st century, because of its excellent physical and mechanical properties of metallic materials as an ideal in the automotive industry, electronic industry and aviation, aerospace and other industries[1]. However, poor corrosion resistance of magnesium alloys become an important issue hinder application of magnesium alloys[2]. So magnesium alloy corrosion problems and the current status of research paper reviews several magnesium alloy protection methods at home and abroad, and also highlighted with our latest laser shock (LSP) study of AZ91 magnesium alloy at high strain rates of corrosion resistance results.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1357 ◽  
Author(s):  
Jaromír Wasserbauer ◽  
Martin Buchtík ◽  
Jakub Tkacz ◽  
Stanislava Fintová ◽  
Jozef Minda ◽  
...  

The corrosion behavior of duplex Ni-P coatings deposited on AZ91 magnesium alloy was studied. The electroless deposition process of duplex Ni-P coating consisted in the preparation of low-phosphorus Ni-P coating (5.7 wt.% of P), which served as a bond coating and high-phosphorus Ni-P coating (11.5 wt.% of P) deposited on it. The duplex Ni-P coatings with the thickness of 25, 50, 75 and 100 µm were deposited on AZ91 magnesium alloy. The electrochemical corrosion behavior of coated AZ91 magnesium alloy was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization method in 0.1 M NaCl. Obtained results showed a significant improvement in the corrosion resistance of coated specimens when compared to uncoated AZ91 magnesium alloy. From the results of the immersion tests in 3.5 wt.% NaCl, 10% solution of HCl and NaOH and 5% neutral salt spray, a noticeable increase in the corrosion resistance with the increasing thickness of the Ni-P coating was observed.


2007 ◽  
Vol 22 (7) ◽  
pp. 2004-2011 ◽  
Author(s):  
Yunchang Xin ◽  
Chenglong Liu ◽  
Xinmeng Zhang ◽  
Guoyi Tang ◽  
Xiubo Tian ◽  
...  

Fast degradation rates in the physiological environment constitute the main limitation for magnesium alloys used in biodegradable hard tissue implants. In this work, the corrosion behavior of AZ91 magnesium alloy in simulated body fluids (SBF) was systematically investigated to determine its performance in a physiological environment. The influence of the main constituent phases on the corrosion behavior was studied by in situ visual observation and scanning electron microscopy. Energy dispersive x-ray spectrometry and Fourier transfer infrared spectroscopy revealed that both calcium and magnesium phosphates are present in the corroded products besides magnesium oxide. Electrochemical methods including open circuit potential evolution and electrochemical impedance spectroscopy were used to investigate the mechanism. The corresponding electrode controlled processes and evolution of the corrosion products layer were discussed. The degradation rate after immersion in SBF for seven days was calculated from both the weight loss and hydrogen evolution methods.


Sign in / Sign up

Export Citation Format

Share Document