Physical Simulation at Hot Deformation

2010 ◽  
Vol 638-642 ◽  
pp. 2591-2597
Author(s):  
Rudolf Kawalla ◽  
Wolfhart Müller ◽  
Werner Jungnickel

Today the numerical simulation of hot deformation processes is very advanced. But it requires mathematical models for metalphysical processes as for microstructure development, which take place during the deformation. Until now such models were developed for many steel grades and non-ferrous materials. For new steels as multi-phase steels laboratory investigations are required, in order to determine the optimal processing technologies of these materials. This applies also to the modelling. So far it is impossible, to calculate sole by mathematical solutions the manifold parameters of metalphysical processes and microstructure, for this reason laboratory trials and simulations are needed implicitly. Even for well known materials such procedures can be essential and useful. Using the multi-functional simulation system Gleeble HDS-V40 it is shown, which possibilities a physical simulation offers today. Starting with the annealing conditions, followed by microstructure development up to cooling, selected examples reflect the results of property development during hot deformation processes. The differences between conventional deformation after re-heating and deformation after direct-charging will be presented. The last-mentioned concept offers in its combination of near-netshape casting and direct charging special benefits, especially saving of energy.

2013 ◽  
Vol 762 ◽  
pp. 261-265 ◽  
Author(s):  
Tanya I. Cherkashina ◽  
Igor Mazur ◽  
Sergey A. Aksenov

Numerical and physical simulation on model samples can provide data for various aspects of metal forming, without resorting to time-consuming and costly full-scale tests. This paper presents examples of modeling of the deformation of a slab with a liquid core. The use of soft reduction can enhance the homogeneity of the structure, which improves the quality of cast billets. Mathematical modeling is described here where the fluid layer is taken into account by the influence of boundary conditions in the crust in the form of ferrostatic pressure, which allows calculation of the intensity of deformation, total deformation and strain. It also provides a novel method for studying the process of soft reduction. It is based on a physical model of the slab consisting of a closed solid shell made of a calibrated lead shot and the Wood's alloy. To simulate the liquid molten metal, the interior of the shell is filled with gelatin. This approach can be applied to further studies on deformation processes and the penetration of deformation into complex metallic systems.


1984 ◽  
Vol 70 (10) ◽  
pp. 1392-1399 ◽  
Author(s):  
Takehide SENUMA ◽  
Hiroshi YADA ◽  
Yoshikazu MATSUMURA ◽  
Shuichi HAMAUZU ◽  
Koe NAKAJIMA

2019 ◽  
Vol 25 (2) ◽  
pp. 101 ◽  
Author(s):  
Hana Jirková ◽  
Kateřina Opatová ◽  
Štěpán Jeníček ◽  
Jiří Vrtáček ◽  
Ludmila Kučerová ◽  
...  

<p class="AMSmaintext">Development of high strength or even ultra-high strength steels is mainly driven by the automotive industry which strives to reduce the weight of individual parts, fuel consumption, and CO<sub>2</sub> emissions. Another important factor is to improve passenger safety. In order to achieve the required mechanical properties, it is necessary to use suitable heat treatment in addition to an appropriate alloying strategy. The main problem of these types of treatments is the isothermal holding step. For TRIP steels, the holding temperature lies in the field of bainitic transformation. These isothermal holds are economically demanding to perform in industrial conditions. Therefore new treatments without isothermal holds, which are possible to integrate directly into the production process, are searched. One way to produce high-strength sheet is the press-hardening technology. Physical simulation based on data from a real-world press-hardening process was tested on CMnSi TRIP steel. Mixed martensitic-bainitic structures with ferrite and retained austenite (RA) were obtained, having tensile strengths in excess of 1000 MPa.</p>


2018 ◽  
Vol 920 ◽  
pp. 244-249 ◽  
Author(s):  
Yaroslav Erisov ◽  
Sergey Surudin ◽  
Fedor Grechnikov

The results of physical simulation of hot compression of semi-finished products, selected from a cast ingot and hot-rolled plate from aluminum-lithium alloy V-1461, in the temperature range of 400-460°C and strain rates of 1-60 s-1are presented. It is established that at a constant strain rate the flow stresses decrease with increasing test temperature, an increase in the strain rate leads to an increase in flow stresses at a constant temperature. The parameters of the hot deformation rheological model, including the Zener-Hollomon parameter and the hyperbolic sine law, are determined. It is established that the parameters of the rheological model for the cast and hot-rolled state differ insignificantly.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Weiqi Kang ◽  
Yi Yang ◽  
Sheng Cao ◽  
Lei Li ◽  
Shewei Xin ◽  
...  

The hot deformation behavior of a new Al–Mn–Sc alloy was investigated by hot compression conducted at temperatures from 330 to 490 °C and strain rates from 0.01 to 10 s−1. The hot deformation behavior and microstructure of the alloy were significantly affected by the deformation temperatures and strain rates. The peak flow stress decreased with increasing deformation temperatures and decreasing strain rates. According to the hot deformation behavior, the constitutive equation was established to describe the steady flow stress, and a hot processing map at 0.4 strain was obtained based on the dynamic material model and the Prasad instability standard, which can be used to evaluate the hot workability of the alloy. The developed hot processing diagram showed that the instability was more likely to occur in the higher Zener–Hollomon parameter region, and the optimal processing range was determined as 420–475 °C and 0.01–0.022 s−1, in which a stable flow and a higher power dissipation were achieved.


2009 ◽  
Vol 16 (6) ◽  
pp. 47-51 ◽  
Author(s):  
A H Meysami ◽  
R Ghasemzadeh ◽  
S H Seyedein ◽  
M R Aboutalebi ◽  
R Ebrahimi ◽  
...  

1986 ◽  
Vol 57 (11) ◽  
pp. 557-562 ◽  
Author(s):  
Radko Kaspar ◽  
Werner Kapellner ◽  
Oskar Pawelski

2010 ◽  
Vol 638-642 ◽  
pp. 2604-2609 ◽  
Author(s):  
Marcin Knapiński ◽  
Bartosz Koczurkiewicz ◽  
Anna Kawałek ◽  
Henryk Dyja

The article presents the results of physical simulations of the process of rolling plates of steel in the strength category 350÷460MPa on the finishing stand of a reversing mill. The simulations were performed for three steel grades and final plate thicknesses 40mm. The purpose of the simulations was to select the conditions of plate deformation to obtain, directly after rolling, structure of material corresponding to the structure obtained from normalizing annealing. Thus, the simulations reflected the normalizing rolling process. The research carried out has allowed to elaborate the new technology of production of rolling plate without an additional thermal treatment like normalization. It allow to decrease a time and total cost of production for this sort of product.


Sign in / Sign up

Export Citation Format

Share Document