scholarly journals USE OF MULTI-PHASE TRIP STEEL FOR PRESS-HARDENING TECHNOLOGY

2019 ◽  
Vol 25 (2) ◽  
pp. 101 ◽  
Author(s):  
Hana Jirková ◽  
Kateřina Opatová ◽  
Štěpán Jeníček ◽  
Jiří Vrtáček ◽  
Ludmila Kučerová ◽  
...  

<p class="AMSmaintext">Development of high strength or even ultra-high strength steels is mainly driven by the automotive industry which strives to reduce the weight of individual parts, fuel consumption, and CO<sub>2</sub> emissions. Another important factor is to improve passenger safety. In order to achieve the required mechanical properties, it is necessary to use suitable heat treatment in addition to an appropriate alloying strategy. The main problem of these types of treatments is the isothermal holding step. For TRIP steels, the holding temperature lies in the field of bainitic transformation. These isothermal holds are economically demanding to perform in industrial conditions. Therefore new treatments without isothermal holds, which are possible to integrate directly into the production process, are searched. One way to produce high-strength sheet is the press-hardening technology. Physical simulation based on data from a real-world press-hardening process was tested on CMnSi TRIP steel. Mixed martensitic-bainitic structures with ferrite and retained austenite (RA) were obtained, having tensile strengths in excess of 1000 MPa.</p>

2018 ◽  
Vol 941 ◽  
pp. 317-322 ◽  
Author(s):  
Hana Jirková ◽  
Kateřina Opatová ◽  
Josef Káňa ◽  
Dagmar Bublíková ◽  
Martin Bystrianský

Development of high strength or even ultra-high strength steels is mainly driven by the automotive industry which strives to reduce the weight of individual parts, fuel consumption, and CO2 emissions. Another important factor is the passenger safety which will improve by the use of these materials. In order to achieve the required mechanical properties, it is necessary to use suitable heat treatment in addition to an appropriate alloying strategy. The main problem of these treatments is the isothermal holding time. These holding times are technologically demanding which is why industry seeks new possibilities to integrate new processing methods directly into the production process. One option for making high-strength sheet metals is press-hardening which delivers high dimensional accuracy and a small spring-back effect. In order to test the use of AHSS steels for this technology, a material-technological modelling was chosen. Material-technological models based on data obtained directly from a real press-hardening process were examined on two experimental steels, CMnSi TRIP and 42SiCr. Variants with isothermal holding and continuous cooling profiles were tested. It was found that by integrating the Q&P process (quenching and partitioning) into press hardening, the 42SiCr steel can develop strengths of over 1800 MPa with a total elongation of about 10%. The CMnSi TRIP steel with lower carbon content and without chromium achieved a tensile strength of 1160 MPa with a total elongation of 10%.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 631 ◽  
Author(s):  
Hamid Bayat ◽  
Sayantan Sarkar ◽  
Bharath Anantharamaiah ◽  
Francesco Italiano ◽  
Aleksandar Bach ◽  
...  

Increased passenger safety and emission control are two of the main driving forces in the automotive industry for the development of light weight constructions. For increased strength to weight ratio, ultra-high-strength steels (UHSSs) are used in car body structures. Prediction of failure in such sheet metals is of high significance in the simulation of car crashes to avoid additional costs and fatalities. However, a disadvantage of this class of metals is a pronounced scatter in their material properties due to e.g., the manufacturing processes. In this work, a robust numerical model is developed in order to take the scatter into account in the prediction of the failure in manganese boron steel (22MnB5). To this end, the underlying material properties which determine the shapes of forming limit curves (FLCs) are obtained from experiments. A modified Marciniak–Kuczynski model is applied to determine the failure limits. By using a statistical approach, the material scatter is quantified in terms of two limiting hardening relations. Finally, the numerical solution obtained from simulations is verified experimentally. By generation of the so called forming limit bands (FLBs), the dispersion of limit strains is captured within the bounds of forming limits instead of a single FLC. In this way, the FLBs separate the whole region into safe, necking and failed zones.


Author(s):  
Hana Jirková ◽  
Kateřina Opatová ◽  
Štěpán Jeníček ◽  
Ludmila Kučerová

2010 ◽  
Vol 638-642 ◽  
pp. 3919-3924 ◽  
Author(s):  
Ralf Kolleck ◽  
Robert Veit

In general hot stamped car body parts show a uniform strength distribution. Especially for safety relevant parts with high requirements concerning crash performance, this uniform strength distribution can cause problems. During a crash a B-pillar e. g. can absorb more energy when the lower part is relatively flexible while the middle and upper part has to be high-tensile to prevent the intrusion into the passenger compartment. Also during the production of hot stamped parts, the high strength causes trouble. When the trimming takes place after the hardening process, the durability of the tool is limited. Thus at the moment the only economic process for trimming of ultra-high-strength steels is laser cutting. This paper presents different approaches to reach local different strength distributions in hot stamped components. In particular the results of a research project of the Institute Tools & Forming, Graz University of Technology are shown where precisely defined areas of different strengths could be obtained in one part. This was achieved by the use of simple and cheap ceramic inserts in conventional press hardening tools.


2013 ◽  
Vol 762 ◽  
pp. 711-716 ◽  
Author(s):  
Risto O. Laitinen ◽  
David A. Porter ◽  
L. Pentti Karjalainen ◽  
Pasi Leiviskä ◽  
Jukka Kömi

Physical simulation of the most critical sub-zones of the heat-affected zone is a useful tool for the evaluation of the toughness of welded joints in high-strength and ultra-high-strength steels. In two high-strength offshore steels with the yield strength of 500 MPa, the coarse grained, intercritical and intercritically reheated coarse grained zones were simulated using the cooling times from 800 to 500 °C (t8/5) 5 s and 30 s. Impact and CTOD tests as well as microstructural investigations were carried out in order to evaluate the weldability of the steels without the need for expensive welding tests. The test results showed that the intercritically reheated coarse grained zone with the longer cooling time t8/5=30 s was the most critical sub-zone in the HAZ due to the M-A constituents and coarse ferritic-bainitic microstructure. In 6 mm thick ultra-high-strength steel Optim 960 QC, the coarse grained and intercritically reheated coarse grained zones were simulated using the cooling times t8/5 of 5, 10, 15 and 20s and the intercritical zone using the cooling times t8/5 of 5 and 10 s in order to select the suitable heat input for welding. The impact test results from the simulated zones fulfilled the impact energy requirement of 14 J (5x10 mm specimen) at -40 °C for the cooling times, t8/5, from 5 to 15 s, which correspond to the heat input range 0.4-0.7 kJ/mm (for a 6 mm thickness).


2016 ◽  
Author(s):  
Joseba Mendiguren ◽  
Rafael Ortubay ◽  
Xabier Agirretxe ◽  
Lander Galdos ◽  
Eneko Sáenz de Argandoña

2013 ◽  
Vol 549 ◽  
pp. 133-140
Author(s):  
Werner Homberg ◽  
Tim Rostek

nnovative ultra high-strength steels have excellent mechanical properties which commonly relate to the materials martensitic microstructure. As thermal heat treatments are state-of-the-art for obtaining the desired microstructure, innovative thermo-mechanical treatments are likely to give rise to even better material qualities. This article highlights various aspects of innovative thermo-mechanical hardening strategies for the processing of ultra high-strength steels, involving both press hardening and friction spinning operations.


2014 ◽  
Vol 783-786 ◽  
pp. 1009-1014 ◽  
Author(s):  
Mahesh C. Somani ◽  
David A. Porter ◽  
L. Pentti Karjalainen ◽  
Pasi Suikkanen ◽  
R.D.K. Misra

Based on the recent concept of quenching and partitioning (Q&P), a novel TMR-DQP (thermomechanical rolling followed by direct quenching and partitioning) processing route has been established for the development of ultra-high strength structural steels with yield strengths ≈1100 MPa combined with good uniform and total elongations and impact toughness. Suitable compositions were designed based on high silicon and/or aluminium contents with or without small additions of Nb, Mo or Ni. The DQP parameters were established with the aid of physical simulation on a Gleeble simulator. Finally, the TMR-DQP processing route was designed for trials on a laboratory rolling mill. Metallographic studies showed that the desired martensite-austenite microstructures were achieved thus providing the targeted mechanical properties. The advantage of strained austenite in refining the martensite packets/blocks was clearly evident. No adverse effect of prolonged partitioning simulating the coiling stage has been noticed suggesting new possibilities for strip and plate products. Promising results in respect of microstructures and mechanical properties indicate that there are possibilities for developing tough ductile structural steels through the TMR-DQP route.


2021 ◽  
Vol 174 ◽  
pp. 111035
Author(s):  
Ajit Kumar Pramanick ◽  
Hrishikesh Das ◽  
Ji-Woo Lee ◽  
Yeyoung Jung ◽  
Hoon-Hwe Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document