Influence of Continuous Annealing Conditions on the Microstructure and Mechanical Properties of a C-Mn Dual Phase Steel

2010 ◽  
Vol 638-642 ◽  
pp. 3479-3484 ◽  
Author(s):  
Roberta O. Rocha ◽  
Tulio M.F. Melo ◽  
Dagoberto Brandao Santos

The influence of continuous annealing variables on the microstructure and mechanical properties of a C-Mn Dual Phase (DP) steel was studied. The annealing cycles were simulated using a Gleeble machine. Some specimens were quenched at different stages of the annealing cycle in order to evaluate the microstructural evolution during the annealing process. Tensile tests and microstrutural analysis were carried out. The results showed that high heating rates increased the final recrystallization temperature and as a consequence the microstructure obtained was refined. Austenite grain nucleation and growth were also influenced by the heating rates. Soaking temperature was the most influent variable on the mechanical properties, i. e., the yield strength increased and the tensile strength decreased with an increase in the soaking temperature. Microstructural analysis showed that not only martensite, but also bainite and martensite-retained autenite constituent (MA) were formed. Undissolved carbides were also detected by transmission electron microscopy.

2010 ◽  
Vol 146-147 ◽  
pp. 1331-1335 ◽  
Author(s):  
Guo Bin Li ◽  
Zheng Zhi Zhao ◽  
Di Tang

The microstructure evolution of 780 MPa hot dip galvanized dual-phase (DP) steel at heating stages of the annealing process was analyzed using a Gleeble−3500 thermal/mechanical simulator. A multifunction continuous annealing simulator was employed to investigate the effect of annealing process on microstructure and mechanical properties of hot dip galvanized DP steel. The experimental results show that ferrite recovery and recrystallization, pearlite dissolution and austenite nucleation and growth take place in the annealing process of hot dip galvanized DP steel. The hardenability can be significantly improved by trace addition of vanadium. When the soaking temperature reaches 780 °C, the tensile strength and total elongation of DP steel can reach 785MPa and 15%, respectively. The microstructure of DP steel mainly consists of a mixture of ferrite and martensite.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1429
Author(s):  
Sipokazi Mabuwa ◽  
Velaphi Msomi

The AA6082–AA8011 friction stir-welded joints were subjected to submerged multiple pass friction stir processing to evaluate the microstructure and mechanical properties of the joints. A maximum of four submerged friction stir processed passes were used in this study. All the specimens were extracted from three different joint positions (start, middle and end). The tests conducted included microstructural analysis, tensile tests, hardness and fracture surface morphology of the post-tensile specimens, were performed using a scanning electron microscope (SEM). There was no particular trend in the microstructure and mechanical properties when looking at the specimen positioning in all the passes. The minimum mean grain sizes were refined from 3.54 to 1.49 µm and the standard deviation from 5.43 to 1.87 µm. The ultimate tensile strength was improved from 84.96 to 94.77 MPa. The four-pass SFSPed specimens were found to have more ductile properties compared to the one-pass SFSPed one. The hardness of the stir zones in all the passes was found to be higher compared to the AA8011 base material but lower than the AA6082 one. The maximum stir zone hardness of 75 HV was observed on the one-pass SFSP joints.


Author(s):  
Aleksandra Towarek ◽  
Wojciech Jurczak ◽  
Joanna Zdunek ◽  
Mariusz Kulczyk ◽  
Jarosław Mizera

AbstractTwo model aluminium-magnesium alloys, containing 3 and 7.5 wt.% of Mg, were subjected to plastic deformation by means of hydrostatic extrusion (HE). Two degrees of deformation were imposed by two subsequent reductions of the diameter. Microstructural analysis and tensile tests of the materials in the initial state and after deformation were performed. For both materials, HE extrusion resulted in the deformation of the microstructure—formation of the un-equilibrium grain boundaries and partition of the grains. What is more, HE resulted in a significant increase of tensile strength and decrease of the elongation, mostly after the first degree of deformation.


Sign in / Sign up

Export Citation Format

Share Document