Quantitative Determination of the Crystalline Phases of the Ceramic Materials Utilizing the Rietveld Method

2010 ◽  
Vol 660-661 ◽  
pp. 164-169 ◽  
Author(s):  
C.T. Kniess ◽  
P.B. Prates ◽  
J.C. de Lima ◽  
N.C. Kuhnen ◽  
Humberto Gracher Riella ◽  
...  

Ceramic materials have properties defined by their chemical and micro-structural composition. The quantification of the crystalline phases is a fundamental stage in the determination of the structure, properties and applications of a ceramic material. Within this context, this study aims is the quantitative determination of the crystalline phases of the ceramic materials developed with addition of mineral coal bottom ash, utilizing the X ray diffraction technique, through the method proposed by Rietveld. For the formulation of the ceramic mixtures a {3,3} simplex-lattice design was used, giving ten formulations of three components (two different types of clays and coal bottom ash). The crystalline phases identified in the ceramic materials after sintering at 1150oC during two hours are: quartz, tridimite, mullite and hematite. The proposed methodology utilizing the Rietveld method for the quantification relating to crystalline phases of the materials was shown to be adequate and efficient.

1976 ◽  
Vol 2 (2) ◽  
pp. 95-111 ◽  
Author(s):  
L. Gerward ◽  
S. Lehn ◽  
G. Christiansen

The use of energy-dispersive X-ray diffraction for quantitative determination of preferred orientations in polycrystalline specimens is analysed. The method is applied to determinations of rolling texture and fibre texture. The adaptability of the method to in situ studies is demonstrated by observations of texture changes simultaneous with the deformation of a specimen in a tension test.


2002 ◽  
Vol 35 (5) ◽  
pp. 577-580 ◽  
Author(s):  
Zein Heiba ◽  
Hasan Okuyucu ◽  
Y. S. Hascicek

Nanosized polycrystalline samples of (Er1−uGdu)2O3(0 ≤u≤ 1.0) were synthesized by a sol–gel technique. X-ray diffraction data were collected and the crystal structures were refined by the Rietveld method. All samples are found to have the same crystal system and formed solid solutions over the whole range ofu. The Er3+and Gd3+ions were randomly distributed over two cationic sites, 8band 24d, in the space groupIa\bar{3} (206) in all refined structures. The lattice parameter was found to vary non-linearly with the composition (u). The average microstrain and average crystallite size have been calculated from the Williamson–Hall plots for each sample. The average size ranges from 50 to 70 nm, and the microstrain from 0.4 to 1.7%.


Sign in / Sign up

Export Citation Format

Share Document