High Pressure Synthesized Magnesium Diboride- and Dodecaboride-Based Superconductors: Structure and Properties

2010 ◽  
Vol 670 ◽  
pp. 21-27 ◽  
Author(s):  
Tatiana Prikhna ◽  
Wolfgang Gawalek ◽  
Yaroslav Savchuk ◽  
Athanasios G. Mamalis ◽  
Vasiliy Tkach ◽  
...  

The critical current density, jc, of high-pressure synthesized MgB2-based balk materials correlates with the amount and distribution of higher borides (MgB12) and Mg-B-O inclusions, which in tern correlates with the synthesis temperature and presence of additions (Ti, Ta, SiC). High-pressure-synthesized materials with near MgB12 composition of matrix exhibited superconducting transition temperature, Tc, of about 37 K, rather high jc (5∙105 and 103 A/cm2 in 0 T and 3.5 T, respectively, at 20 K) and doubled matrix microhardness: 25±1.1 GPa at 4.9 N –load as compared to materials with MgB2).

Crystals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Anota Ijaduola ◽  
Rai Shipra ◽  
Athena Sefat

This study investigated the application of pressure on the superconducting properties of a thallium-based cuprate, namely Tl2Ba2Ca2Cu3O9-δ (Tl-2223). The superconducting transition temperature (Tc) and the critical current density (Jc) were studied by applying ~1 GPa of pressure. This hydrostatic pressure was applied in a piston-cylinder-cell (PCC), using Pb as a manometer and Daphne 7373 oil as the pressure transmitting medium. For estimating the Jc, we used Bean’s critical state formula on the magnetic hysteresis curves at 10 K and 20 K. Both the Tc and Jc improved with pressure. The Jc values increased at both temperatures and the Tc value increased by 4 K with a pressure of 0.8 GPa. These results clearly indicate that pressure is another tool to control properties of quantum materials.


2002 ◽  
Vol 17 (10) ◽  
pp. 2599-2603 ◽  
Author(s):  
Q. X. Jia ◽  
S. R. Foltyn ◽  
J. Y. Coulter ◽  
J. F. Smith ◽  
M. P. Maley

We have investigated epitaxial superconducting SmBa2Cu3O7 (Sm123) films grown by pulsed-laser deposition on single-crystal SrTiO3 substrates. The deposition temperature plays an important role in determining the superconducting properties of Sm123 films. The superconducting transition temperature increases with the deposition temperature whereas the transition width decreases at deposition temperatures in the range of 700–875 °C. A Sm123 film deposited at 850 °C exhibits a transition temperature above 93 K with a transition width less than 0.5 K. Even though Sm123 films exhibit a higher transition temperature than Yba2Cu3O7 (Y123), the Sm123 shows lower critical current density at liquid-nitrogen temperature. The nominal critical current density of Sm123 film is less than 1 MA/cm2 at 75.4 K. Nevertheless, the Sm123 films have less anisotropy and stronger pinning characteristics compared to Y123. They are also much smoother with fewer particulates, as revealed by scanning electron microscopy.


2002 ◽  
Vol 17 (3) ◽  
pp. 525-527 ◽  
Author(s):  
C-Q. Jin ◽  
S-C. Li ◽  
J-L. Zhu ◽  
F-Y. Li ◽  
Z-X. Liu ◽  
...  

We report the property studies of a MgB2 superconductor with high critical current density. The MgB2 superconductor was readily fabricated through a direct high-pressure synthesis of the respective elements. The obtained high-density MgB2 undergoes a sharp superconducting transition at 39 K. The bulk critical current density (Jc) of the sample was calculated on the basis of Bean's critical state model, and rather high critical current densities over a wide temperature range were obtained in comparison with the ambient prepared samples. The results highlight that high-pressure sintering would be a promising way to produce and search for this kind of intermetallic boride and the related superconductors.


1987 ◽  
Vol 99 ◽  
Author(s):  
J. O. Willis ◽  
J. R. Cost ◽  
R. D. Brown ◽  
J. D. Thompson ◽  
D. E. Peterson

ABSTRACTThe superconducting transition temperature of sintered YBa2Cu3O7 decreases at a rate of 2.7 K/1018 n/cm2 (E > 0.1 MeV) for fast neutron irradiation. The critical current density Jc increases a factor of three at zero field and more than three at nonzero fields for fluences up to 2×1018 n/cm2. At both 7 and 75 K, Jc is decreasing with fluence near 3×1018 n/cm2.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
H. El Ouaddi ◽  
A. Tirbiyine ◽  
A. Taoufik ◽  
Y. Ait Ahmed ◽  
F. Chiban ◽  
...  

We report investigations of the low temperature dc susceptibility and the magnetization on the layered organic superconductor k-(BEDT-TTF)2Cu[N(CN)2]Br near 80 K and the effect of disorder on the superconducting transition temperature Tc. The shielding effect (S) and the critical current density Jc were studied (with H parallel to the c axis of the crystal). Jc can be estimated by analysis of magnetic hysteresis measurement using the Bean model. For each temperature value, we observed two regimes in the critical current density Jc(H). Our results show that the magnetic properties of these compounds depend strongly on the cooling rate. The structural transformation which occurs at the vicinity of 80 K very strongly influences the physics of vortex lattice and the associated magnetic behavior. #organic_superconductor #critical_current #shielding_effect #magnetic_susceptibility #vortex_pinning


2020 ◽  
Vol 33 (6) ◽  
pp. 065001 ◽  
Author(s):  
Sunseng Pyon ◽  
Daisuke Miyawaki ◽  
Tsuyoshi Tamegai ◽  
Satoshi Awaji ◽  
Hijiri Kito ◽  
...  

1997 ◽  
Vol 12 (11) ◽  
pp. 2941-2946 ◽  
Author(s):  
S. R. Foltyn ◽  
E. J. Peterson ◽  
J. Y. Coulter ◽  
P. N. Arendt ◽  
Q. X. Jia ◽  
...  

To investigate potential limits to the rate at which high-quality YBa2Cu3O7–δ can be deposited, we have produced a series of 1 μm thick films by pulsed laser deposition on single-crystal SrTiO3 substrates at average rates ranging from 2 Å/s to 240 Å/s. The critical current density of low-rate films was over 2 MA/cm2 at 75 K, self field, but dropped linearly with rate to about 1 MA/cm2 at the upper end of the range. In addition, the superconducting transition temperature, resistivity above the transition, and performance in an applied magnetic field were all degraded by increasing the deposition rate. A change in c-axis lattice parameter suggests that possible causes for this degradation are oxygen deficiency or cation disorder with the latter being the more likely. Annealing high-rate films at 790 °C for as little as 20 min improved critical current density to within 20% of low-rate values, and resulted in dramatic improvements in other film properties as well.


Sign in / Sign up

Export Citation Format

Share Document