critical current density jc
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 14)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Raphael Unterrainer ◽  
David X Fischer ◽  
Alena Lorenz ◽  
Michael Eisterer

Abstract The magnets confining the plasma in future fusion devices will be exposed to a significant destructive flux of fast neutrons. Particularly, in cost efficient compact reactor designs, the degradation of the superconductor becomes an issue and directly impacts the commercial viability. We report on the influence of neutron radiation on the superconducting transition temperature, Tc, and the critical current density, jc, and discuss possibilities to counteract the degradation by thermal treatments. We found that the degradation in Tc and jc are closely related to each other, likely by the expected loss of superfluid density; thus, Tc is a very useful indicator for the magnets' degradation. It increases linearly with annealing temperature and around 25 % of the decrease can be recovered by annealing at 150 °C and about 60 % at 400 °C, which would more than double the magnet’s life time. However, a loss of oxygen has to be impeded in the latter case.


Author(s):  
Ghazi Hajiri ◽  
Kévin BERGER ◽  
Rémi Dorget ◽  
Jean Lévêque ◽  
hervé Caron

Abstract The use of High Temperature Superconducting (HTS) cables in power systems increases transmission capacity whereas reducing the volume of the installation. In addition, when transmission currents exceed a few kA, HTS DC cables significantly reduce power losses, right-of-ways and total system mass. This summary describes the various studies to be carried out in order to correctly dimension DC HTS cables for the new railway network envisaged by the French company SNCF, which has to take into account the ultra-urban needs. The process used to design DC cables for different operating current values between 5 kA and 20 kA at 1 750 V using commercial (RE)BaCuO tapes is presented. In this design stage, the dependence of the critical current density Jc(B, θ, T) of the superconducting tapes, the thermal properties of the materials used, and the different cooling modes as a function of the cable length are taken into account. Finally, we discuss a cryogenic solution to protect the cable in case of short-circuit or overload.


Author(s):  
Takumu Iwanaka ◽  
Toshiaki Kusunoki ◽  
Hiroshi Kotaki ◽  
Motomune Kodama ◽  
Hideki Tanaka ◽  
...  

Abstract A new in-situ process for depositing MgB2 film is being developed in the present study as a candidate method to facilitate the mass production of MgB2-thin-film superconducting tapes. Here, a MgB2 film was synthesized on a heated copper substrate via “hybrid deposition,” comprising thermal evaporation of magnesium and sputtering of boron. High-temperature post-annealing was performed to increase the critical current density (Jc) of the MgB2 thin films obtained via hybrid deposition. The Jc of the MgB2 film deposited at 360°C by hybrid deposition and post-annealed at 430°C was drastically improved to 1,100 A/mm2 at 20 K under 4 T, 79,000 A/mm2 at 15 K under 3 T, and 59,000 A/mm2 at 10 K under 5 T under a magnetic field parallel to the film. It was expected that the incorporation of hybrid deposition in processing using a reel-to-reel machine would facilitate the synthesis of high-Jc, long MgB2-thin-film superconducting wires.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6611
Author(s):  
Armando Galluzzi ◽  
Antonio Leo ◽  
Andrea Masi ◽  
Francesca Varsano ◽  
Angela Nigro ◽  
...  

We analyze the magnetic behavior of a CaKFe4As4 polycrystalline sample fabricated by a mechanochemically assisted synthesis route. By means of DC magnetization (M) measurements as a function of the temperature (T) and DC magnetic field (H) we study its critical parameters and pinning features. The critical temperature Tc has been evaluated by M(T) curves performed in Zero Field Cooling-Field Cooling conditions. These curves show the presence of a little magnetic background for temperatures above Tc, as also confirmed by the hysteresis loops M(H). Starting from the M(H) curves, the critical current density Jc of the sample has been calculated as a function of the field at different temperatures in the framework of the Bean critical state model. The Jc(H) values are in line with the ones reported in the literature for this typology of samples. By analyzing the temperature dependence of the critical current density Jc(T) at different magnetic fields, it has been found that the sample is characterized by a strong type pinning regime. This sample peculiarity can open perspectives for future improvement in the fabrication of this material.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5214
Author(s):  
Armando Galluzzi ◽  
Krastyo Buchkov ◽  
Vihren Tomov ◽  
Elena Nazarova ◽  
Antonio Leo ◽  
...  

The magnetization M of an Fe(Se, Te) single crystal has been measured as a function of temperature T and dc magnetic field H. The sample properties have been analyzed in the case of a magnetic field parallel to its largest face H||ab. From the M(T) measurement, the Tc of the sample and a magnetic background have been revealed. The superconducting hysteresis loops M(H) were between 2.5 K and 15 K showing a tilt due to the presence of a magnetic signal measured at T > Tc. From the M(H) curves, the critical current density Jc(H) has been extracted at different temperatures showing the presence of a second magnetization peak phenomenon. By extracting and fitting the Jc(T) curves at different fields, a pinning regime crossover has been identified and shown to be responsible for the origin of the second magnetization peak phenomenon. Then, the different kinds of pinning centers of the sample were investigated by means of Dew-Hughes analysis, showing that the pinning mechanism in the sample can be described in the framework of the collective pinning theory. Finally, the values of the pinning force density have been calculated at different temperatures and compared with the literature in order to understand if the sample is promising for high-current and high-power applications.


2021 ◽  
Vol 5 (2) ◽  
pp. 18
Author(s):  
Toshinori Ozaki ◽  
Takuya Kashihara ◽  
Itsuhiro Kakeya ◽  
Ryoya Ishigami

Raising the critical current density Jc in magnetic fields is crucial to applications such as rotation machines, generators for wind turbines and magnet use in medical imaging machines. The increase in Jc has been achieved by introducing structural defects including precipitates and vacancies. Recently, a low-energy ion irradiation has been revisited as a practically feasible approach to create nanoscale defects, resulting in an increase in Jc in magnetic fields. In this paper, we report the effect of proton irradiation with 1.5 MeV on superconducting properties of iron–chalcogenide FeSe0.5Te0.5 films through the transport and magnetization measurements. The 1.5 MeV proton irradiation with 1 × 1016 p/cm2 yields the highest Jc increase, approximately 30% at 5–10 K and below 1 T without any reduction in Tc. These results indicate that 1.5 MeV proton irradiations could be a practical tool to enhance the performance of iron-based superconducting tapes under magnetic fields.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2847
Author(s):  
Rémi Dorget ◽  
Quentin Nouailhetas ◽  
Alexandre Colle ◽  
Kévin Berger ◽  
Kimiaki Sudo ◽  
...  

High-Temperature Superconductors (HTS) considerably accelerate the development of superconducting machines for electrical engineering applications such as fully electrical aircraft. This present contribution is an overview of different superconducting materials that can be used as magnetic screens for the inductor of high specific power electrical machines. The impact of the material properties, such as the critical temperature (Tc) and the critical current density (Jc), on the machine performances is evaluated. In addition, the relevance to flux modulation machines of different HTS bulk synthesis methods are addressed.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 507
Author(s):  
Vasiliy N. Kushnir ◽  
Serghej L. Prischepa ◽  
Michela Trezza ◽  
Carla Cirillo ◽  
Carmine Attanasio

The stray fields produced by ferromagnetic layers in Superconductor/Insulator/Ferromagnet (S/I/F) heterostructures may strongly influence their superconducting properties. Suitable magnetic configurations can be exploited to manipulate the main parameters of the hybrids. Here, the nucleation of the superconducting phase in an external magnetic field that periodically oscillates along the film width is studied on the base of the numerical solution of the linearized system of Usadel equations. In addition, the effect of the magnetic configuration of the F-layer on the temperature dependence of the critical current density, Jc(T), is investigated in the framework of the Ginzburg–Landau phenomenological theory on the base of the oscillating model of a stray field. By following this approach, the Jc(T) dependence of a Nb/SiO2/PdNi trilayer is reproduced for different magnetic configurations of the PdNi layer.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5018
Author(s):  
Michael Rudolf Koblischka ◽  
Yassine Slimani ◽  
Anjela Koblischka-Veneva ◽  
Thomas Karwoth ◽  
XianLin Zeng ◽  
...  

Bulk FeSe superconductors of the iron-based (IBS) “11” family containing various additions of silver were thoroughly investigated concerning the microstructure using optical microscopy and electron microscopy (TEM and SEM). The measurements of electrical resistivity were performed through the four-point technique in the temperature interval T= 2–150 K. The Aslamazov–Larkin model was employed to analyze the fluctuation-induced conductivity (FIC) in all acquired measurements. In all studied products, we found that the FIC curves consist of five different regimes of fluctuation, viz. critical region (CR), three-dimensional (3D), two-dimensional (2D), one-dimensional (1D), and shortwave fluctuation (SWF) regimes. The critical current density (Jc), the lower and upper critical magnetic fields (Bc1 and Bc2), the coherence length along the c-axis at zero-temperature (ξc(0)), and further parameters were assessed with regards to the silver amount within the products. The analyses discloses a diminution in the resistivity and a great reduction in ξc(0) with Ag addition. The optimal silver doping amount is achieved for 7 wt.%, which yields the best superconducting transition and the greatest Jc value.


2020 ◽  
Vol 62 (10) ◽  
pp. 1710
Author(s):  
С.А. Судоргин ◽  
Н.Г. Лебедев

The influence of (0.00, 0.20, 0.40, 0.50, and 0.60wt%) nano-sized tin oxide (SnO2) particles on electrical conductivity fluctuation in normal and superconducting state of the Y3Ba5Cu8O18±δ (denoted as Y-358) polycrystalline samples is studied. Phase formation and microstructures have been systematically examined. By increasing the content of SnO2 in YBCO matrix, X-ray diffraction technique showed slightly variation in lattice parameters and overall reduction in the orthorhombicity. Scanning electron microscopy observations and the crystallite size calculation also revealed that the grain size and the average crystallite size decreased compared to the SnO2 free sample. Aslamazov–Larkin and Lawrence–Doniach prototypes were performed to analyse conductivity fluctuations based on the electrical resistivity ρ(T) measurements. Superconducting transition temperatures Tc and TLD have been reported. The influence of SnO2 addition on the superconducting properties indicates that with the addition of SnO2 nanoparticles into Y-358 compound, some parameters values such as zero-resistance critical temperature Tc zero, coherence distance alongside the c axis at 0K ξc(0), and super-layer length d decrease in total, while anisotropy γ, critical magnetic fields Bc1(0), Bc2(0), and critical current density Jc(0) increase in SnO2-added Y-358 specimens compared to the pure one. The reasons corresponding to these scenarios are discussed in details.


Sign in / Sign up

Export Citation Format

Share Document