Complete Determination of the Local Stress Field in Epitaxial Thin Films Using Single Microstructure

2011 ◽  
Vol 679-680 ◽  
pp. 213-216 ◽  
Author(s):  
Massimo Camarda ◽  
Ruggero Anzalone ◽  
Andrea Severino ◽  
Nicolò Piluso ◽  
Antonino La Magna ◽  
...  

In this article, using finite element simulations and analytical approaches, we demonstrate that planar rotators[1] can be effectively used to determine both the uniform and gradient residual stresses in thin films with higher accuracy compared to other microstructures.

2020 ◽  
Vol 222 (1) ◽  
pp. 153-168 ◽  
Author(s):  
Elizabeth S Cochran ◽  
Robert J Skoumal ◽  
Devin McPhillips ◽  
Zachary E Ross ◽  
Katie M Keranen

SUMMARY The orientations of faults activated relative to the local principal stress directions can provide insights into the role of pore pressure changes in induced earthquake sequences. Here, we examine the 2011 M 5.7 Prague earthquake sequence that was induced by nearby wastewater disposal. We estimate the local principal compressive stress direction near the rupture as inferred from shear wave splitting measurements at spatial resolutions as small as 750 m. We find that the dominant azimuth observed is parallel to previous estimates of the regional compressive stress with some secondary azimuths oriented subparallel to the strike of the major fault structures. From an extended catalogue, we map ten distinct fault segments activated during the sequence that exhibit a wide array of orientations. We assess whether the five near-vertical fault planes are optimally oriented to fail in the determined stress field. We find that only two of the fault planes, including the M   5.7 main shock fault, are optimally oriented. Both the M 4.8 foreshock and M   4.8 aftershock occur on fault planes that deviate 20–29° from the optimal orientation for slip. Our results confirm that induced event sequences can occur on faults not optimally oriented for failure in the local stress field. The results suggest elevated pore fluid pressures likely induced failure along several of the faults activated in the 2011 Prague sequence.


Author(s):  
Michael C. Gibson ◽  
Amer Hameed ◽  
John G. Hetherington

Swaging is one method of autofrettage, a means of pre-stressing high-pressure vessels to increase their fatigue lives and load bearing capacity. Swaging achieves the required deformation through physical interference between an oversized mandrel and the bore diameter of the tube, as it is pushed through the tube. A Finite Element model of the swaging process was developed, in ANSYS, and systematically refined, to investigate the mechanism of deformation and subsequent development of residual stresses. A parametric study was undertaken, of various properties such as mandrel slope angle, parallel section length and friction coefficient. It is observed that the axial stress plays a crucial role in the determination of the residual hoop stress and reverse yielding. The model, and results obtained from it, provides a means of understanding the swaging process and how it responds to different parameters. This understanding, coupled with future improvements to the model, potentially allows the swaging process to be refined, in terms of residual stresses development and mandrel driving force.


2020 ◽  
Vol 234 ◽  
pp. 107096 ◽  
Author(s):  
Wei Shen ◽  
Guiming Liang ◽  
Chunmei Li ◽  
Enqian Liu

2019 ◽  
Vol 220 (1) ◽  
pp. 450-460
Author(s):  
Lucia Nardone ◽  
Francesca Bianco ◽  
Lucia Zaccarelli ◽  
Domenico Patanè

SUMMARY The aim of this paper is to study the temporal variations in the seismic wavefield associated with the stress changes in the dynamic features of the Mt Etna volcanic activity. We used shear wave splitting analysis on a huge data set of local earthquakes, in order to identify changes of the local stress field at Mt Etna during the time interval from 2006 to 2011. This analysis allows us to obtain two parameters: the polarization direction of the fast shear wave (φ) and the time delay of the slow shear wave (Td,time delay between the split shear waves). Orientation of φ generally provides information about the anisotropic symmetry and stress direction whereas Td provide information about the average crack density along the ray path. Based on our findings it is possible to divide Etna Volcano in three different sectors, each one distinguished by typical fast wave polarization direction. We find that the western part of the volcano is controlled by the regional tectonic stress field having a NS and EW directions. Instead, the eastern part of the volcano is mainly controlled by the local volcanic stress, particularly an EW local stress field in the NE sector (Pernicana), and a quasi NS local stress field in the SE sector (Mascalucia, Timpe), where previous studies evidenced: (i) some low-Qp anomaly regions between 0 and about 6 km depth, probably associated with high pore pressure and the intense faulting and (ii) by magnetotelluric surveys, several high conductivity zones, up to 8 km depth, related to a diffuse presence of hydrothermal activity and fluid circulation. Temporal variations in time delay, mostly before the 2008–2009 lateral eruption, can be interpreted as stress accumulation increase with a consequent release of stress due to coalescing of microcracks in the conduit for the eruption of magma.


2010 ◽  
Vol 652 ◽  
pp. 25-30
Author(s):  
M.K. Khan ◽  
Michael E. Fitzpatrick ◽  
L.E. Edwards ◽  
S.V. Hainsworth

The residual strain field around the scratches of 125µm depth and 5µm root radius have been measured from the Synchrotron X-ray diffraction. Scratches were produced using different tools in fine-grained aluminium alloy AA 5091. Residual stresses up to +1700 micro-strains were measured at the scratch tip for one tool but remained up to only +1000 micro-strains for the other tool scratch. The load-displacement curves obtained from nanoindentation were used to determine the residual stresses around the scratches. It was found that the load-displacement curves are sensitive to any local residual stress field present and behave according to the type of residual stresses. This combination of nanoindentation and synchrotron X-rays has been proved highly effective for the study of small-scale residual stresses around the features such as scratches.


Author(s):  
Xian-Kui Zhu

Residual stresses exist in welded structures due to thermal stresses. Without temperature change, large plastic deformation can result in “cold” residual stresses in a wrinkle or dent in a metallic pipe. For a crack in residual stress field, residual stresses might have strong effect on fracture parameter, the J-integral. In order to ensure its path-independence, different correction methods have been developed in consideration of residual stress effect. Recently, the finite element commercial software ABAQUS adopted one of the correction methods, and is able to calculate the residual stress corrected J-integral. A brief review is first given to the J-integral definition, the conditions of path-independence or path-dependence, and the modifications to consider the residual stress effect. A modified single edge-notched bend (SENB) specimen is then used, and a numerical procedure is developed for ABAQUS to evaluate the path-independence of the residual stress corrected J-integral. Detailed elastic-plastic finite element analyses are performed for the SENB specimen in three-point bending. The residual stress field, crack-tip stress field, and J-integral with and without consideration of residual stresses are discussed.


Sign in / Sign up

Export Citation Format

Share Document