Television Part of Plastic Mold Design Based on CAE

2011 ◽  
Vol 694 ◽  
pp. 750-753 ◽  
Author(s):  
Jian Zhou ◽  
Li Jun Li ◽  
Yi Hua Hu ◽  
Ming Chao Wang

The article points out the television plastic part size,giving the general design route,then describing the general design process of television back shell by Pro/E.The mold design also is introduced,including mold cavity distrubition, size determining of cavity mold and punch mold, selection of mold frame, set of pushing rod and stripping, sizes of part and mold, side core-drawing mechanism, cooling system design, mold’s assembly,through simulation,the mold’s design can be determined whether good or bad.

2021 ◽  
Vol 20 ◽  
pp. 133-139
Author(s):  
Alexander Zemliak

The different design trajectories have been analyzed in the design space on the basis of the new system design methodology. Optimal position of the design algorithm start point was analyzed to minimize the CPU time. The initial point selection has been done on the basis of the before discovered acceleration effect of the system design process. The geometrical dividing surface was defined and analyzed to obtain the optimal position of the algorithm start point. The numerical results of the design of passive and active nonlinear electronic circuits confirm the possibility of the optimal selection of the starting point of the design algorithm.


2014 ◽  
Vol 989-994 ◽  
pp. 3127-3131
Author(s):  
Guo Dong Liang ◽  
Jun Hui Liu

The design of injection die on the upper cover of clamshell phone is introduced. The dual-plate die has side gate for opposite glue injection, the parts are ejected by ejector pin, the side reversed buckle contains three blocks, the reversed buckle at flip shaft consists of two inner sliders, and all the eight inner reversed buckles are made up of inclined pushing rods, and the cooling system embraces "U" shaped cooling waterway. Its application in practice has proved the reasonable die structure, smooth remolding, and qualified plastic part design.


Author(s):  
C. L. Li

Abstract This paper reports an automatic algorithm that synthesizes the design of cooling system for plastic injection mould. Automation in cooling system design is an important research area that has not received much attention. In the proposed method, a building block approach to design synthesis is adopted. Given a plastic part and a library of pre-defined cooling sub-systems, the algorithm first decomposes the part into features known as cooling features. For each cooling feature, the corresponding cooling sub-systems are retrieved from the library. The cooling sub-systems are then modified and combined into an initial design of the cooling system for the entire plastic part. The performance of the initial design is verified by using CMold analysis. A design synthesis program has been implemented and an example is given to illustrate the feasible of the proposed algorithm.


2012 ◽  
Vol 214 ◽  
pp. 173-176
Author(s):  
Xiu Zhong Cao

The design of plastic parts structure analysis, confirmed the mould adopts the exactly two cavities, with two points type surface, three board type injection molds. Exhaust systems use the parting surface and lateral slide block clearance, plunger, cooperate with clearance to exhaust, and using a runner filling mold overall layout form. In the mold design process, the design of classification, gating system, exhaust system, cooling system, demoulding mechanism, are introduced in this paper.


2013 ◽  
Vol 1 (1) ◽  
pp. 158-178
Author(s):  
Urcun John Tanik

Cyberphysical system design automation utilizing knowledge based engineering techniques with globally networked knowledge bases can tremendously improve the design process for emerging systems. Our goal is to develop a comprehensive architectural framework to improve the design process for cyberphysical systems (CPS) and implement a case study with Axiomatic Design Solutions Inc. to develop next generation toolsets utilizing knowledge-based engineering (KBE) systems adapted to multiple domains in the field of CPS design automation. The Cyberphysical System Design Automation Framework (CPSDAF) will be based on advances in CPS design theory based on current research and knowledge collected from global sources automatically via Semantic Web Services. A case study utilizing STEM students is discussed.


2020 ◽  
Vol 67 (1) ◽  
pp. 42-47
Author(s):  
Anatoliy I. Sopov ◽  
Aleksandr V. Vinogradov

In power transformers, energy losses in the form of heat are about 2 percent of their rated power, and in transformers of large power centers reach hundreds of kilowatts. Heat is dissipated into the environment and heats the street air. Therefore, there is a need to consume this thermal energy as a source of heat supply to nearby facilities. (Research purpose) To develop methods and means of using excess heat of power transformers with improvement of their cooling system design. (Materials and methods) The authors applied following methods: analysis, synthesis, comparison, monographic, mathematical and others. They analyzed various methods for consuming excess heat from power transformers. They identified suitable heat supply sources among power transformers and potential heat consumers. The authors studied the reasons for the formation of excess heat in power transformers and found ways to conserve this heat to increase the efficiency of its selection. (Results and discussion) The authors developed an improved power transformer cooling system design to combine the functions of voltage transformation and electric heating. They conducted experiments to verify the effectiveness of decisions made. A feasibility study was carried out on the implementation of the developed system using the example of the TMG-1000/10/0.4 power transformer. (Conclusions) The authors got a new way to use the excess heat of power transformers to heat the AIC facilities. It was determined that the improved design of the power transformer and its cooling system using the developed solutions made it possible to maximize the amount of heat taken off without quality loss of voltage transformation.


1972 ◽  
Vol 3 (1) ◽  
pp. 83-109 ◽  
Author(s):  
CHRISTOPHER E. NUGENT ◽  
THOMAS E. VOLLMANN
Keyword(s):  

2021 ◽  
Vol 13 (8) ◽  
pp. 4492
Author(s):  
Janka Saderova ◽  
Andrea Rosova ◽  
Marian Sofranko ◽  
Peter Kacmary

The warehouse process, as one of many logistics processes, currently holds an irreplaceable position in logistics systems in companies and in the supply chain. The proper function of warehouse operations depends on, among other things, the type of the used technology and their utilization. The research in this article is focused on the design of a warehouse system. The selection of a suitable warehouse system is a current research topic as the warehouse system has an impact on warehouse capacity and utilization and on the speed of storage activities. The paper presents warehouse system design methodology that was designed applying the logistics principle-systematic (system) approach. The starting point for designing a warehouse system represents of the process of design logistics systems. The design process consists of several phases: project identification, design process paradigm selection, system analysis, synthesis, and project evaluation. This article’s contribution is the proposed methodology and design of the warehouse system for the specified conditions. The methodology was implemented for the design of a warehouse system in a cold box, which is a part of a distribution warehouse. The technology of pallet racking was chosen in the warehouse to store pallets. Pallets will be stored and removed by forklifts. For the specified conditions, the warehouse system was designed for two alternatives of racking assemblies, which are served by forklifts. Alternative 1—Standard pallet rack with wide aisles and Alternative 2—Pallet dynamic flow rack. The proposed systems were compared on the basis of selected indicators: Capacity—the number of pallet places in the system, Percentage ratio of storage area from the box area, Percentage ratio of handling aisles from the box area, Access to individual pallets by forklift, Investment costs for 1 pallet space in EUR. Based on the multicriteria evaluation, the Alternative 2 was chosen as the acceptable design of the warehouse system with storage capacity 720 pallet units. The system needs only two handling aisles. Loading and unloading processes are separate from each other, which means that there are no collisions with forklifts. The pallets with the goods are operated on the principle of FIFO (first in, first out), which will facilitate the control of the shelf life of batches or series of products. The methodology is a suitable tool for decision-making in selecting and designing a warehouse system.


Sign in / Sign up

Export Citation Format

Share Document