Classification of Textures and Microstructure Stability in Rolled F.C.C. Metals with Grain Interactions

2011 ◽  
Vol 702-703 ◽  
pp. 253-260
Author(s):  
Atish K. Ray ◽  
Bradley J. Diak

A novel experimental investigation of both high and medium stacking fault energy bi-crystals of aluminum and copper, respectively, show that orientation, grain interaction and material are all key factors in the stability of some ideal rolling texture components. Ideal {110} or {112} orientations obtained from high purity aluminum or copper single crystals were embedded within a {110} crystal orientation of the same material and reduced 60 percent by channel die compression at room temperature. Spatial misorientations developed inside the deformation bands were analyzed using SEM-based EBSD. The presence of long-range orientation gradients in some of the crystals revealed the interacting nature of polycrystalline deformation. From the results it is proposed that f.c.c. polycrystalline grains can be classified according to their stability and susceptibility to deformation: (i) stable and interacting; (ii) unstable and interacting; (iii) stable and non-interacting; (iv) unstable and non-interacting.

2021 ◽  
Vol 9 (2) ◽  
pp. 16-20
Author(s):  
Ivan Usenkov

The article attempts to identify and systematize the key factors of the stability of legislation, which are significant circumstances that, due to the objectively existing causal relationship, affect it in one way or another. It is noted that the stability factors are neutral, which can have both a stabilizing and a destabilizing effect on the legislation. The author's classification of stability factors by positioning, location and time of action into internal and external, legal and socio-political, permanent, pre-legislative and post-legislative, respectively, is given. Acknowledgments: The reported study was funded by RFBR, project number 20-311-90067.


1961 ◽  
Vol 06 (03) ◽  
pp. 435-444 ◽  
Author(s):  
Ricardo H. Landaburu ◽  
Walter H. Seegers

SummaryAn attempt was made to obtain Ac-globulin from bovine plasma. The concentrates contain mostly protein, and phosphorus is also present. The stability characteristics vary from one preparation to another, but in general there was no loss before 1 month in a deep freeze or before 1 week in an icebox, or before 5 hours at room temperature. Reducing agents destroy the activity rapidly. S-acetylmercaptosuccinic anhydride is an effective stabilizing agent. Greatest stability was at pH 6.0.In the purification bovine plasma is adsorbed with barium carbonate and diluted 6-fold with water. Protein is removed at pH 6.0 and the Ac-globulin is precipitated at pH 5.0. Rivanol and alcohol fractionation is followed by chromatography on Amberlite IRC-50 or DEAE-cellulose. The final product is obtained by isoelectric precipitation.


2020 ◽  
Author(s):  
Katsuya Maruyama ◽  
Takashi Ishiyama ◽  
Yohei Seki ◽  
Kounosuke Oisaki ◽  
Motomu Kanai

A novel Tyr-selective protein bioconjugation using the water-soluble persistent iminoxyl radical is described. The conjugation proceeded with high Tyr-selectivity and short reaction time under biocompatible conditions (room temperature in buffered media under air). The stability of the conjugates was tunable depending on the steric hindrance of iminoxyl. The presence of sodium ascorbate and/or light irradiation promoted traceless deconjugation, restoring the native Tyr structure. The method is applied to the synthesis of a protein-dye conjugate and further derivatization to azobenzene-modified peptides.


2018 ◽  
Vol 35 (4) ◽  
pp. 133-136
Author(s):  
R. N. Ibragimov

The article examines the impact of internal and external risks on the stability of the financial system of the Altai Territory. Classification of internal and external risks of decline, affecting the sustainable development of the financial system, is presented. A risk management strategy is proposed that will allow monitoring of risks, thereby these measures will help reduce the loss of financial stability and ensure the long-term development of the economy of the region.


Author(s):  
Рубен Косян ◽  
Ruben Kosyan ◽  
Viacheslav Krylenko ◽  
Viacheslav Krylenko

There are many types of coasts classifications that indicate main coastal features. As a rule, the "static" state of the coasts is considered regardless of their evolutionary features and ways to further transformation. Since the most part of the coastal zone studies aimed at ensuring of economic activity, it is clear that the classification of coast types should indicate total information required by the users. Accordingly, the coast classification should include the criterion, characterizing as dynamic features of the coast and the conditions and opportunities of economic activity. The coast classification, of course, should be based on geomorphological coast typification. Similar typification has been developed by leading scientists from Russia and can be used with minimal modifications. The authors propose to add to basic information (geomorphological type of coast) the evaluative part for each coast sector. It will include the estimation of the coast changes probability and the complexity of the coast stabilization for economic activity. This method will allow to assess the dynamics of specific coastal sections and the processes intensity and, as a result – the stability of the coastal area.


1987 ◽  
Vol 52 (5) ◽  
pp. 1356-1361
Author(s):  
S. Abdel Rahman ◽  
M. Elsafty ◽  
A. Hattaba

The conformation of elastin-like peptides Boc-Ala-Pro-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM were examined in solution using circular dichroism at 30 °C, 50 °C, and 70 °C and in solid state by IR at room temperature. The studies show that the β-turn is a significant conformational feature for peptides under investigation in solution at 30 °C and 50 °C, but at 70 °C the tetra, hexa, and decapeptides show the CD feature characteristic of the β-structure while the dodecapeptide spectra show the presence of β-turn which indicates the stability of the β-turn at this chain length. The IR spectra show that in the solid state at room temperature all investigated peptides assume essentially a β-turn except the tetrapeptide which present evidence of antiparallel β-structure. The β-turn contribution in the IR spectra increases with the increase of the chain length of the peptide.


1956 ◽  
Vol 2 (3) ◽  
pp. 145-159 ◽  
Author(s):  
Joseph T Anderson ◽  
Ancel Keys

Abstract 1. Methods are described for the separation, by paper electrophoresis and by cold ethanol, of α- and β-lipoproteins in 0.1 ml. of serum, with subsequent analysis of cholesterol in the separated portions. 2. It is shown that both methods of separation yield separated fractions containing substantially the same amounts of cholesterol. 3. Detailed data are given on the errors of measurement for total cholesterol and for cholesterol in the separated lipoprotein fractions. 4. Studies are reported on the stability of cholesterol in stored serum and on paper electrophoresis strips. It is shown that simple drying on filter paper causes no change in cholesterol content and yields a product that is stable for many weeks at ordinary room temperature. 5. The sources of variability in human serum cholesterol values are examined and it is shown that spontaneous intraindividual variability is a much greater source of error than the errors of measurement with these methods.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ramanshu P. Singh ◽  
Shakti Yadav ◽  
Giridhar Mishra ◽  
Devraj Singh

Abstract The elastic and ultrasonic properties have been evaluated at room temperature between the pressure 0.6 and 10.4 GPa for hexagonal closed packed (hcp) hafnium (Hf) metal. The Lennard-Jones potential model has been used to compute the second and third order elastic constants for Hf. The elastic constants have been utilized to calculate the mechanical constants such as Young’s modulus, bulk modulus, shear modulus, Poisson’s ratio, and Zener anisotropy factor for finding the stability and durability of hcp hafnium metal within the chosen pressure range. The second order elastic constants were also used to compute the ultrasonic velocities along unique axis at different angles for the given pressure range. Further thermophysical properties such as specific heat per unit volume and energy density have been estimated at different pressures. Additionally, ultrasonic Grüneisen parameters and acoustic coupling constants have been found out at room temperature. Finally, the ultrasonic attenuation due to phonon–phonon interaction and thermoelastic mechanisms has been investigated for the chosen hafnium metal. The obtained results have been discussed in correlation with available findings for similar types of hcp metals.


Author(s):  
David Quéré ◽  
Mathilde Reyssat

Superhydrophobic materials recently attracted a lot of attention, owing to the potential practical applications of such surfaces—they literally repel water, which hardly sticks to them, bounces off after an impact and slips on them. In this short review, we describe how water repellency arises from the presence of hydrophobic microstructures at the solid surface. A drop deposited on such a substrate can float above the textures, mimicking at room temperature what happens on very hot plates; then, a vapour layer comes between the solid and the volatile liquid, as described long ago by Leidenfrost. We present several examples of superhydrophobic materials (either natural or synthetic), and stress more particularly the stability of the air cushion—the liquid could also penetrate the textures, inducing a very different wetting state, much more sticky, due to the possibility of pinning on the numerous defects. This description allows us to discuss (in quite a preliminary way) the optimal design to be given to a solid surface to make it robustly water repellent.


Sign in / Sign up

Export Citation Format

Share Document