Surface Finish Issues after Direct Metal Deposition

2012 ◽  
Vol 706-709 ◽  
pp. 228-233 ◽  
Author(s):  
P. Peyre ◽  
M. Gharbi ◽  
C. Gorny ◽  
M. Carin ◽  
S. Morville ◽  
...  

Derived from laser cladding, the Direct Metal Deposition (DMD) laser process, is based upon a laser beam – projected powder interaction, and allows manufacturing complex 3D shapes much faster than conventional processes. However, the surface finish remains critical, and DMD parts usually necessitate post-machining steps. In this context, the focus of our work was: (1) to understand the physical mechanisms responsible for deleterious surface finishes, (2) to propose different experimental solutions for improving surface finish. Our experimental approach is based upon: (1) adequate modifications of the DMD conditions (gas shielding, laser conditions, coaxial or off-axis nozzles), (2) a characterization of laser-powder-melt-pool interactions using fast camera analysis, (3) a precise check of surface aspects using 3D profilometry, SEM, (4) preliminary thermo-convective simulations to understand melt-pool hydrodynamics. Most of the experimental tests were carried out on a Ti6Al4V titanium alloy, widely investigated already. Results confirm that surface degradation depends on two aspects: the sticking of non-melted or partially melted particles on the free surfaces, and the formation of menisci with more or less pronounced curvature radii. Among other aspects, a reduction of layer thickness and an increase of melt-pool volumes to favor re-melting processes are shown to have a beneficial effect on roughness parameters.

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1388 ◽  
Author(s):  
Jose Ruiz ◽  
Magdalena Cortina ◽  
Jon Arrizubieta ◽  
Aitzol Lamikiz

The use of the Laser Metal Deposition (LMD) technology as a manufacturing and repairing technique in industrial sectors like the die and mold and aerospace is increasing within the last decades. Research carried out in the field of LMD process situates argon as the most usual inert gas, followed by nitrogen. Some leading companies have started to use helium and argon as carrier and shielding gas, respectively. There is therefore a pressing need to know how the use of different gases may affect the LMD process due there being a lack of knowledge with regard to gas mixtures. The aim of the present work is to evaluate the influence of a mixture of argon and helium on the LMD process by analyzing single tracks of deposited material. For this purpose, special attention is paid to the melt pool temperature, as well as to the characterization of the deposited clads. The increment of helium concentration in the gases of the LMD processes based on argon will have three effects. The first one is a slight reduction of the height of the clads. Second, an increase of the temperature of the melt pool. Last, smaller wet angles are obtained for higher helium concentrations.


2017 ◽  
Vol 02 (04) ◽  
pp. 1750013 ◽  
Author(s):  
Jian Liu ◽  
Erica Stevens ◽  
Qingchen Yang ◽  
Markus Chmielus ◽  
Albert C. To

An analytical model was developed for the melt pool and single scan track geometry as a function of process parameters. For computational efficiency, the developed model has simple mathematical forms with essential physics taken into account, without the need for complicated numerical simulation. In this research, a non-diverging Gaussian laser beam and coaxial diverging Gaussian powder stream combination is used to represent the coaxial laser direct metal deposition (LDMD) process. Analytical laser-powder interaction model is used to obtain the distribution of attenuated laser intensity and temperature of heated powders at the substrate. On the substrate, the melt pool is calculated by integrating Rosenthal's point heat source model. An iterative procedure is used to ensure the mass–energy balances and to calculate the melt pool and catchment efficiency. By assuming that the assimilated powder will reshape due to surface tension before solidification, a simple clad geometry model is established. The proposed model is used to simulate the geometry of single track depositions of Ti6Al4V, which shows a good agreement between model prediction and experimental results. This work demonstrates that the developed model has the potential to be used to narrow the parameter space for process optimization.


2014 ◽  
Vol 214 (2) ◽  
pp. 485-495 ◽  
Author(s):  
Myriam Gharbi ◽  
Patrice Peyre ◽  
Cyril Gorny ◽  
Muriel Carin ◽  
Simon Morville ◽  
...  

2021 ◽  
Vol 136 ◽  
pp. 106745
Author(s):  
Mingzhi Chen ◽  
Yi Lu ◽  
Zhandong Wang ◽  
Huifang Lan ◽  
Guifang Sun ◽  
...  

2019 ◽  
Vol 813 ◽  
pp. 435-440
Author(s):  
Maurizio Troiano ◽  
Alessia Teresa Silvestri ◽  
Fabio Scherillo ◽  
Andrea El Hassanin ◽  
Roberto Solimene ◽  
...  

The physical behavior of metal powders during laser-based additive manufacturing processes has been investigated. In particular, an experimental campaign of direct metal deposition has been carried out to evaluate the effect of the laser power and spot size on the powder/substrate interaction and on the surface morphology of the final piece. A fast-camera has been used to evaluate the interaction phenomena during the printing process, while confocal microscopy has been carried out to measure the surface morphology of the samples. Results highlighted that increasing the laser power and laser spot size, the particle impact velocity is about constant, while the powder/laser/substrate interaction zone increases. As a consequence, the mean thickness increases, as confirmed by surface characterization.


2020 ◽  
Vol 22 (4) ◽  
pp. 1901444
Author(s):  
Yu Wu ◽  
Xu Cheng ◽  
Shuquan Zhang ◽  
Xiangjun Tian ◽  
Bei He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document