Chlorine in SiC: Experiment and Theory

2012 ◽  
Vol 717-720 ◽  
pp. 229-232
Author(s):  
Giovanni Alfieri ◽  
Tsunenobu Kimoto

An annealing study, in the 100-1400 C temperature range ,was carried out on Cl-implanted n- or p-type 4H-SiC epilayers. The electrical characterization of the epilayers shows the rise of several deep levels and the role of Cl, on both carrier concentration and defects' microscopic structure, is discussed in the light of theoretical results obtained by density functional calculations performed on a 64-atom cubic SiC supercell.

MRS Advances ◽  
2019 ◽  
Vol 4 (41-42) ◽  
pp. 2241-2248
Author(s):  
James N. Talbert ◽  
Samuel R. Cantrell ◽  
Md. Abdul Ahad Talukder ◽  
Luisa M. Scolfaro ◽  
Wilhelmus J. Geerts

ABSTRACTThe electrical properties of Radio Frequency Sputtered NiFeO and NiO films deposited on n and p-type Silicon is investigated for two different oxygen flows. Rectifying properties for Ni0.8Fe0.2O1+ α on n-Si showed Iforward/Ireverse >10,000 for α>0 and Iforward/Ireverse >50 for α<0. Both types of devices have opposite forward biases. Results suggest that NiFeO sputtered at high oxygen flow is p-type. For NiO and NiFeO on p-Si no strong rectifying properties were observed. The specific contact resistivity of Pt/Ni0.9Fe0.1O1+ α (α>0) was estimated from the difference between the two and four-point probe resistances (0.0007 ± 0.0003 Ω cm2). Using density functional theory calculations, density of state and charge density plots were obtained for systems modelled after experiment, showing that states introduced by O vacancies in NiFeO are localized and prefer locations near Ni explaining the observed hysteresis effects in the IV curves of devices sputtered at low oxygen flow.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohd. Afzal

A new complex (Ru(η6-p-cymene)(5-ASA)Cl2) (1) where 5-ASA is 5-aminosalicylic acid has been prepared by reacting the ruthenium arene precursors ((η6-arene)Ru(μ-Cl)Cl)2, with the 5-ASA ligands in a 1:1 ratio. Full characterization of complex 1 was accomplished by elemental analysis, IR, and TGA following the structure obtained from a single-crystal X-ray pattern. The structural analysis revealed that complex 1 shows a “piano-stool” geometry with Ru-C (2.160(5)- 2.208(5)Å), Ru-N (2.159(4) Å) distances, which is similar to equivalents sister complex. Density functional theory (DFT) was used to calculate the significant molecular orbital energy levels, binding energies, bond angles, bond lengths, and spectral data (FTIR, NMR, and UV–VIS) of complex 1, consistent with the experimental results. The IR and UV–VIS spectra of complex 1 were computed using all of the methods and choose the most appropriate way to discuss. Hirshfeld surface analysis was also executed to understand the role of weak interactions such as H⋯H, C⋯H, C-H⋯π, and vdW interactions, which play a significant role in the crystal environment’s stability. Moreover, the luminescence results at room temperature show that complex 1 gives a more intense emission band positioned at 465 nm upon excitation at 330 nm makes it a suitable candidate for the building of photoluminescent material.


2003 ◽  
Vol 18 (6) ◽  
pp. 554-559 ◽  
Author(s):  
F Moscatelli ◽  
A Scorzoni ◽  
A Poggi ◽  
G C Cardinali ◽  
R Nipoti

Author(s):  
D. Berman-Mendoza ◽  
O. I. Diaz-Grijalva ◽  
R. López-Delgado ◽  
A. Ramos-Carrazco ◽  
M. E. Alvarez-Ramos ◽  
...  

2018 ◽  
Vol 96 (7) ◽  
pp. 816-825 ◽  
Author(s):  
H.H. Güllü ◽  
M. Terlemezoğlu ◽  
Ö. Bayraklı ◽  
D.E. Yıldız ◽  
M. Parlak

In this paper, we present results of the electrical characterization of n-Si/p-Cu–Zn–Se hetero-structure. Sputtered film was found in Se-rich behavior with tetragonal polycrystalline nature along with (112) preferred orientation. The band gap energy for direct optical transitions was obtained as 2.65 eV. The results of the conductivity measurements indicated p-type behavior and carrier transport mechanism was modelled according to thermionic emission theory. Detailed electrical characterization of this structure was carried out with the help of temperature-dependent current–voltage measurements in the temperature range of 220–360 K, room temperature, and frequency-dependent capacitance–voltage and conductance-voltage measurements. The anomaly in current–voltage characteristics was related to barrier height inhomogeneity at the interface and modified by the assumption of Gaussian distribution of barrier height, in which mean barrier height and standard deviation at zero bias were found as 2.11 and 0.24 eV, respectively. Moreover, Richardson constant value was determined as 141.95 Acm−2K−2 by means of modified Richardson plot.


2005 ◽  
Vol 483-485 ◽  
pp. 551-554
Author(s):  
Bharat Krishnan ◽  
Yaroslav Koshka

Recombination-induced passivation (RIP) experiments were conducted on p-type SiC after plasma treatment in deuterium. Higher sensitivity of SIMS to deuterium allowed us to confirm that recombination-induced athermal migration of hydrogen is indeed a driving mechanism for the RIP phenomenon. Hydrogen (or deuterium) athermally migrates from the plasma-induced hydrogen- or deuterium-reach near-surface layer down to more than a micron in depth, which under certain conditions creates a sufficiently thick layer of the n-type conductivity in the originally ptype epilayer. Thermal admittance spectroscopy was applied to investigate the defect levels in the top portion of the bandgap of the RIP-induced n-type layer. A few different levels located close to the conduction band of the originally p-type material were investigated.


Sign in / Sign up

Export Citation Format

Share Document