Improved electrical characterization of Al–Ti ohmic contacts on p-type ion implanted 6H-SiC

2003 ◽  
Vol 18 (6) ◽  
pp. 554-559 ◽  
Author(s):  
F Moscatelli ◽  
A Scorzoni ◽  
A Poggi ◽  
G C Cardinali ◽  
R Nipoti
2000 ◽  
Vol 77 (10) ◽  
pp. 1478-1480 ◽  
Author(s):  
S.-K. Lee ◽  
C.-M. Zetterling ◽  
E. Danielsson ◽  
M. Östling ◽  
J.-P. Palmquist ◽  
...  

1996 ◽  
Vol 449 ◽  
Author(s):  
J. C. Zolper ◽  
S. J. Pearton ◽  
J. S. Williams ◽  
H. H. Tan ◽  
R. J. Karlicek ◽  
...  

ABSTRACTIon implantation doping and isolation is expected to play an enabling role for the realization of advanced Ill-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor.1-4 Although these initial implantation studies demonstrated the feasibility of this technique for the Ill-Nitride materials, further work is needed to realize its full potential.After reviewing some of the initial studies in this field, we present new results for improved annealing sequences and defect studies in GaN. First, sputtered A1N is shown by electrical characterization of Schottky and Ohmic contacts to be an effective encapsulant of GaN during the 1100 °C implant activation anneal. The A1N suppresses N-loss from the GaN surface and the formation of a degenerate n+-surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, we examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. We show that for a Si-dose of l × l016 cm-2 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material.


Author(s):  
D. Berman-Mendoza ◽  
O. I. Diaz-Grijalva ◽  
R. López-Delgado ◽  
A. Ramos-Carrazco ◽  
M. E. Alvarez-Ramos ◽  
...  

2018 ◽  
Vol 96 (7) ◽  
pp. 816-825 ◽  
Author(s):  
H.H. Güllü ◽  
M. Terlemezoğlu ◽  
Ö. Bayraklı ◽  
D.E. Yıldız ◽  
M. Parlak

In this paper, we present results of the electrical characterization of n-Si/p-Cu–Zn–Se hetero-structure. Sputtered film was found in Se-rich behavior with tetragonal polycrystalline nature along with (112) preferred orientation. The band gap energy for direct optical transitions was obtained as 2.65 eV. The results of the conductivity measurements indicated p-type behavior and carrier transport mechanism was modelled according to thermionic emission theory. Detailed electrical characterization of this structure was carried out with the help of temperature-dependent current–voltage measurements in the temperature range of 220–360 K, room temperature, and frequency-dependent capacitance–voltage and conductance-voltage measurements. The anomaly in current–voltage characteristics was related to barrier height inhomogeneity at the interface and modified by the assumption of Gaussian distribution of barrier height, in which mean barrier height and standard deviation at zero bias were found as 2.11 and 0.24 eV, respectively. Moreover, Richardson constant value was determined as 141.95 Acm−2K−2 by means of modified Richardson plot.


Sign in / Sign up

Export Citation Format

Share Document