Analysis of Weld Bead Parameters of Overlay Deposited on D2 Steel Components by Plasma Transferred Arc (PTA) Process

2013 ◽  
Vol 755 ◽  
pp. 39-45 ◽  
Author(s):  
F. García-Vázquez ◽  
A. Aguirre ◽  
Ana Arizmendi-Morquecho ◽  
H.M. Hernández-García ◽  
L. Santiago-Bautista ◽  
...  

Plasma Transferred Arc (PTA) process is increasingly used in applications where enhancement of wear, corrosion and heat resistance of metals surface is required. The shape of weld bead geometry affected by the PTA welding process parameters is an indication of the quality of the weld. PTA is a versatile method of depositing high-quality metallurgically fused deposits on relatively low cost surfaces. The overlay deposited is an alloy that is hard and more corrosion resistant than counterparts laid down by Gas Tungsten Arc Welding (GTAW) or Oxy Fuel Welding (OFW) processes. Weld deposits are characterized by very low levels of inclusions, oxides, and discontinuities. This process produces smooth deposits that significantly reduce the amount of post weld machining required. Metal-Mechanic industry continuously requires recovering tool steel components subjected to severe wear. The steel known as D2 is considered to be a high carbon, high chromium cold work tool steel. In this research, weld beads were deposited on D2 steel by using PTA process with different parameters as welding current and travel speed using base nickel filler metal. In order to evaluate the metallurgical features on the weld beads/substrate interface a microstructural characterization was performed by using Scanning Electron Microscopy (SEM) and to evaluate the mechanical properties was conducted the wear test.

2016 ◽  
Vol 21 (2) ◽  
pp. 209-219 ◽  
Author(s):  
Ali Tahaei ◽  
Felipe Garcia Vazquez ◽  
Mattia Merlin ◽  
Ana Arizmendi-Morquecho ◽  
Felipe Arturo Reyes Valdes ◽  
...  

Abstract In this investigation, a nickel-base powder mixed with tungsten carbide particles was applied by Plasma Transferred Arc welding (PTA) on the surface of the D2 cold work tool steel to improve surface quality and to extend its lifetime during applications. The Design of Experiment (DoE) method was applied to obtain the appropriate combination of hardfacing parameters and to run the minimum number of tests. Current, travel speed and preheat were considered as variable parameters. These parameters are important to reach a final layer with an appropriate bead geometry accompanied with good metallurgical properties. All samples were prepared for metallurgical investigations and the effect of process parameters on the weld bead geometry was considered. For each experiment run, weld bead geometry parameters were measured including dilution, penetration and reinforcement. Microstructures and the distribution of tungsten carbide particles after welding were analyzed by Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) equipped with an EDS microprobe. In addition, hardness tests were performed to evaluate the mechanical properties of the weld bead layers. Finally, among all the experiments, the best sample with appropriate bead geometry and microstructure was selected.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1659
Author(s):  
Sasan Sattarpanah Karganroudi ◽  
Mahmoud Moradi ◽  
Milad Aghaee Attar ◽  
Seyed Alireza Rasouli ◽  
Majid Ghoreishi ◽  
...  

This study involves the validating of thermal analysis during TIG Arc welding of 1.4418 steel using finite element analyses (FEA) with experimental approaches. 3D heat transfer simulation of 1.4418 stainless steel TIG arc welding is implemented using ABAQUS software (6.14, ABAQUS Inc., Johnston, RI, USA), based on non-uniform Goldak’s Gaussian heat flux distribution, using additional DFLUX subroutine written in the FORTRAN (Formula Translation). The influences of the arc current and welding speed on the heat flux density, weld bead geometry, and temperature distribution at the transverse direction are analyzed by response surface methodology (RSM). Validating numerical simulation with experimental dimensions of weld bead geometry consists of width and depth of penetration with an average of 10% deviation has been performed. Results reveal that the suggested numerical model would be appropriate for the TIG arc welding process. According to the results, as the welding speed increases, the residence time of arc shortens correspondingly, bead width and depth of penetration decrease subsequently, whilst simultaneously, the current has the reverse effect. Finally, multi-objective optimization of the process is applied by Derringer’s desirability technique to achieve the proper weld. The optimum condition is obtained with 2.7 mm/s scanning speed and 120 A current to achieve full penetration weld with minimum fusion zone (FZ) and heat-affected zone (HAZ) width.


2014 ◽  
Vol 554 ◽  
pp. 386-390
Author(s):  
C.W. Mohd Noor ◽  
Manuhutu Ferry ◽  
W.B. Wan Nik

The prediction of the optimal weld bead width is an important aspect in shielded metal arc welding (SMAW) process as it is related to the strength of the weld. This paper focuses on investigation of the development of the simple and accurate model for prediction of weld bead geometry. The experiment used welding current, arc length, welding speed, welding gap and electrode diameter as input parameters. While output parameters are bead width, depth of penetration and weld reinforcement. A number of 33 mild steel plate specimens had undergone the SMAW welding process. The experimental data was used to develop mathematical models using SPSS software. The actual and predicted values of the weld bead geometry are compared. The proposed models shows positive correlation to the real process.


2021 ◽  
Vol 54 (2) ◽  
pp. 309-315
Author(s):  
Majid Midhat Saeed ◽  
Ziad Shakeeb Al Sarraf

Based on high quality and reliability, one of the most efficient methods for joining metals is Submerged Arc Welding (SAW). In this presented work, an attempt has been successfully taken to develop a model to predict the effect of input parameters on weld bead geometry of submerged arc welding process with the help of neural network technique and analysis of various process control variables and important of weld bead parameters in submerged arc welding. The complexity non-linear relationships of input / output variables for any computational models can be addressed by using artificial neural networks (ANN). Today, ANN represents a powerful modeling technique, that depend on statistical approach, presently practiced in many fields of engineering for modeling complex relationships that other physical models cannot be explained it easily. A welding process with automatic or semiautomatic is required to complete the weld through using tubular electrode with consumable flux. Parameters such as welding current, welding speed and voltage are influenced on the quality of the joints. The work conducts many experiments; these are basically depending on many factors and levels. A selection of 2205 duplex stainless steel is carried out in this study to conduct three factors and five levels of central composite design. Neural network model structure having number of neurons layers such as (3 input layers, 1 hidden layer and 3 output layers) with back propagation algorithm has been successfully applied to extract weld bead geometry from predicting the effect of input parameters. Good agreement was obtained between predicted and experiment results, however process parameters such as speed shows opposite effect on all weld parameters. It was seen that weld height and width are proportional to the amount of input current. The prediction of the neural network model showed excellent agreement with the actual results, which indicate that the neural network is viable means for predicting of not only weld bead geometry, but also other parameters such as polarity, current type and flux geometry. This recommends setting the neural network to be applicable for real time work.


Author(s):  
Akash Deep ◽  
Vivek Singh ◽  
Som Ashutosh ◽  
M. Chandrasekaran ◽  
Dixit Patel

Abstract Austenitic stainless steel (ASS) is widely fabricated by tungsten inert gas (TIG) welding for aesthetic look and superior mechanical properties while compared to other arc welding process. Hitherto, the limitation of this process is low depth of penetration and less productivity. To overcome this problem activated tungsten inert gas (A-TIG) welding process is employed as an alternative. In this investigation the welding performance of conventional TIG welding is compared with A-TIG process using TiO2 and SiO2 flux with respect to weld bead geometry. The experimental investigation on A-TIG welding of ASS-201 grade shows TiO2 flux helps in achieve higher penetration as compared to SiO2 flux. While welding with SiO2 the hardness in HAZ and weld region higher than that of TIG welding process.


2021 ◽  
Author(s):  
Dawei Zhao ◽  
Yuriy Bezgans ◽  
Nikita Vdonin ◽  
Liudmila Radionova ◽  
Vitaly Bykov

Abstract The profile of the welding bead changes with the welding process parameters during the gas metal arc welding (GMAW) process, the reinforcement disappears and the penetration becomes sunken when the excessive welding heat input is applied. However, little research work is specially planned to cope with the studying of welding bead at these stages. A systematic studying of the relationships among the welding process variables and welding bead geometric features and optimization of the welding quality is presented. The influences of the welding technological parameters (voltage, welding speed, and wire feed speed) on the welding geometry were revealed and the models correlating them were established. The features of the weld bead geometry were composed of top reinforcement width, top reinforcement height, penetration depth, bottom reinforcement width, and bottom reinforcement height. By the desirability function approach, the recommendation of suitable welding parameters to meet the contradicting demands of multiple bead geometric features is fulfilled. The microstructure in different welding regions and mechanical performances of the welding joints produced by the verification test were also studied.


Sign in / Sign up

Export Citation Format

Share Document